Nothing
# --------------------------------------------------------------------------
mongrad <- function(x, Wfdobj, basislist=vector("list",JMAX),
returnMatrix=FALSE) {
# Evaluates the gradient with respect to the coefficients in Wfdobj
# of a monotone function of the form
# h(x) = [D^{-1} exp Wfdobj](x)
# where D^{-1} means taking the indefinite integral.
# The interval over which the integration takes places is defined in
# the basisfd object in Wfdobj.
# Arguments:
# X ... argument values at which function and derivatives are evaluated
# WFDOBJ ... a functional data object
# BASISLIST ... a list containing values of basis functions
# Returns:
# GVAL ... value of gradient at input values in X.
# RETURNMATRIX ... If False, a matrix in sparse storage model can be returned
# from a call to function BsplineS. See this function for
# enabling this option.
# Last modified 9 May 2012 by Jim Ramsay
JMAX <- 15
JMIN <- 11
EPS <- 1E-5
coef <- Wfdobj$coefs
coefd <- dim(coef)
ndim <- length(coefd)
if (ndim > 1 && coefd[2] != 1) stop("Wfdobj is not a single function")
basisfd <- Wfdobj$basis
rangeval <- basisfd$rangeval
nbasis <- basisfd$nbasis
onebas <- rep(1,nbasis)
width <- rangeval[2] - rangeval[1]
# set up first iteration
JMAXP <- JMAX + 1
h <- rep(1,JMAXP)
h[2] <- 0.25
# matrix SMAT contains the history of discrete approximations to the
# integral
smat <- matrix(0,JMAXP,nbasis)
# array TVAL contains the argument values used in the approximation
# array FVAL contains the integral values at these argument values,
# rows corresponding to argument values
# the first iteration uses just the endpoints
j <- 1
tval <- rangeval
if (is.null(basislist[[j]])) {
bmat <- getbasismatrix(tval, basisfd, 0, returnMatrix)
basislist[[j]] <- bmat
} else {
bmat <- basislist[[j]]
}
fx <- as.matrix(exp(bmat %*% coef))
fval <- as.matrix(outer(c(fx),onebas)*bmat)
smat[1,] <- width*apply(fval,2,sum)/2
tnm <- 0.5
# now iterate to convergence
for (iter in 2:JMAX) {
tnm <- tnm*2
del <- width/tnm
flag <- ifelse(rangeval[1]+del/2 >= rangeval[2]-del/2, -1, 1)
tj <- seq(rangeval[1]+del/2, rangeval[2]-del/2, by=flag*abs(del))
tval <- c(tval, tj)
if (is.null(basislist[[iter]])) {
bmat <- getbasismatrix(tj, basisfd, 0, returnMatrix)
basislist[[iter]] <- bmat
} else {
bmat <- basislist[[iter]]
}
fx <- as.matrix(exp(bmat %*% coef))
gval <- as.matrix(outer(c(fx),onebas)*bmat)
fval <- rbind(fval,gval)
smat[iter,] <- (smat[iter-1,] + width*apply(fval,2,sum)/tnm)/2
if (iter >= max(c(5,JMIN))) {
ind <- (iter-4):iter
result <- polintmat(h[ind],smat[ind,],0)
ss <- result[[1]]
dss <- result[[2]]
if (all(abs(dss) < EPS*max(abs(ss))) || iter >= JMAX) {
# successful convergence
# sort argument values and corresponding function values
ordind <- order(tval)
tval <- tval[ordind]
fval <- as.matrix(fval[ordind,])
# set up partial integral values
lval <- outer(rep(1,length(tval)),fval[1,])
del <- tval[2] - tval[1]
fval <- del*(apply(fval,2,cumsum) - 0.5*(lval + fval))
gval <- matrix(0,length(x),nbasis)
for (i in 1:nbasis) gval[,i] <- approx(tval, fval[,i], x)$y
return(gval)
}
}
smat[iter+1,] <- smat[iter,]
h[iter+1] <- 0.25*h[iter]
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.