Nothing
smooth.sparse.mean <- function(data, time ,rng=c(0, 1), type = "" , nbasis = NULL, knots = NULL, norder = NULL, lambda = NULL){
# Arguments:
# DATA a matrix object or list -- If the set is supplied as a matrix object,
# the rows must correspond to argument values and columns to replications,
# and it will be assumed that there is only one variable per observation.
# If y is a three-dimensional array, the first dimension corresponds to
# argument values, the second to replications, and the third to variables
# within replications. -- If it is a list, each element must be a matrix
# object, the rows correspond to argument values per individual. First
# column corresponds to time points and followin columns to argument values
# per variable.
# TIME Array with time points where data was taken. length(time) == ncol(data)
# RNG an array of length 2 containing the lower and upper
# boundaries for the rangeval of argument values
# TYPE Type of basisfd for smoothing the mean estimate function
# NBASIS An integer variable specifying the number of basis functions
# KNOTS a vector specifying the break points if type = "bspline"
# NORDER an integer specifying the order of b-splines if type = "bspline"
# LAMBDA a nonnegative real number specifying the amount of smoothing to be applied
# to the estimated functional parameter
if(type == "bspline"){
nbasis = length(knots) + norder - 2
basis = create.bspline.basis(rng,nbasis,norder)
}else if (type == "fourier"){
basis = create.fourier.basis(rng,nbasis)
}else if (type == "exp"){
basis = create.exponential.basis(rng,nbasis)
}else if (type == "const"){
basis = create.constant.basis(rng)
}else if (type == "mon"){
basis = create.monomial.basis(rng,nbasis)
}
if(is.list(data)){
data.list = data
}else{
data.list = sparse.list(data, time)
}
data.mat = do.call(rbind,data.list)
if(!is.null(lambda)){
curv.Lfd = int2Lfd(2)
curv.fdPar = fdPar(basis,curv.Lfd,lambda)
smooth = smooth.basis(data.mat[,1],data.mat[,-1],curv.fdPar)
}else{
smooth = smooth.basis(data.mat[,1],data.mat[,-1],basis)
}
if(ncol(smooth$fd$coefs)>1){
smooth$fd$coefs = array(smooth$fd$coefs,dim=c(nrow(smooth$fd$coefs),1,ncol(smooth$fd$coefs)))
}
return(smooth$fd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.