R/markerSim.R

Defines functions .genedrop_X .genedrop_AUT simpleSim .optimal.precomputation .mutate markerSim

Documented in markerSim simpleSim

#' Marker simulation
#'
#' Simulates marker genotypes conditional on the pedigree structure and known
#' genotypes. Note: This function simulates independent realisations at a single
#' locus. Equivalently, it can be thought of as independent simulations of
#' identical, unlinked markers. For simulations of a _set_ of markers, see
#' [profileSim()].
#'
#' This implements (with various time savers) the algorithm used in SLINK of the
#' LINKAGE/FASTLINK suite. If `partialmarker` is NULL, genotypes are simulated
#' by simple gene dropping, using [simpleSim()].
#'
#' @param x A `ped` object or a list of such.
#' @param N A positive integer: the number of (independent) markers to be
#'   simulated.
#' @param ids A vector containing ID labels of those pedigree members whose
#'   genotypes should be simulated. By default, all individuals are included.
#' @param alleles (Only if `partialmarker` is NULL.) A vector with allele
#'   labels. If NULL, the following are tried in order:
#'
#'   * `names(afreq)`
#'
#'   * `seq_along(afreq)'
#'
#'   * `1:2` (Fallback if both `alleles` and `afreq` are NULL.)
#'
#' @param afreq (Only if `partialmarker` is NULL.) A numeric vector with allele
#'   frequencies, possibly named with allele labels.
#' @param mutmod,rate Arguments specifying a mutation model, passed on to
#'   [pedtools::marker()] (see there for explanations).
#' @param partialmarker Either NULL (resulting in unconditional simulation), a
#'   marker object (on which the simulation should be conditioned) or the name
#'   (or index) of a marker attached to `x`.
#' @param loopBreakers A numeric containing IDs of individuals to be used as
#'   loop breakers. Relevant only if the pedigree has loops, and only if
#'   `partialmarker` is non-NULL. See [pedtools::breakLoops()].
#' @param seed An integer seed for the random number generator (optional).
#' @param verbose A logical.
#' @return A `ped` object equal to `x` except its `MARKERS` entry, which
#'   consists of the `N` simulated markers.
#'
#' @author Magnus Dehli Vigeland
#' @seealso [profileSim()], [simpleSim()]
#'
#' @references G. M. Lathrop, J.-M. Lalouel, C. Julier, and J. Ott, *Strategies
#'   for Multilocus Analysis in Humans*, PNAS 81(1984), pp. 3443-3446.
#'
#' @examples
#' x = nuclearPed(2)
#'
#' # Unconditional simulation
#' markerSim(x, N = 2, alleles = 1:3)
#'
#' # Conditional on one child being homozygous 1/1
#' x = addMarker(x, "3" = "1/1", alleles = 1:3)
#' markerSim(x, N = 2, partialmarker = 1)
#' markerSim(x, N = 1, ids = 4, partialmarker = 1, verbose = FALSE)
#'
#' @importFrom stats rbinom
#' @export
markerSim = function(x, N = 1, ids = NULL, alleles = NULL, afreq = NULL,
                     mutmod = NULL, rate = NULL, partialmarker = NULL,
                     loopBreakers = NULL, seed = NULL, verbose = TRUE) {

  if (!is.ped(x) && !is.pedList(x))
    stop2("x must be either a `ped` object or a list of such")

  if (!is.null(seed))
    set.seed(seed)

  # if input is a list of ped objects: Apply markerSim recursively
  if (is.pedList(x))
    return(lapply(x, function(xi) markerSim(xi, N = N,
                                            ids = intersect(xi$ID, ids),
                                            alleles = alleles, afreq = afreq,
                                            partialmarker = partialmarker,
                                            loopBreakers = loopBreakers,
                                            verbose = verbose)))

  starttime = proc.time()

  likel_counter = 0

  if (!is.null(x$LOOP_BREAKERS))
    stop2("`ped` objects with pre-broken loops are not allowed as input to `markerSim()`")
  if(is.null(ids))
    ids = labels(x)

  ### Partial marker # TODO: Move this to after simpleSim call?
  m = partialmarker
  if(!is.null(m)) {

    if (!is.null(alleles) || !is.null(afreq))
      stop2("When `partialmarker` is given, both `alleles` and `afreq` must be NULL.")

    if(is.marker(m)) { # TODO (fix/export from pedtools
      # validateMarker(m)
      # checkConsistency(x, list(m))
    }
    else if (is.atomic(m) && length(m) == 1) {
      m = getMarkers(x, markers = m)[[1]]
    }
    else
      stop2("Argument `partialmarker` must be a `marker` object, or the name (or index) of a single marker attached to `x`")

    if (!allowsMutations(m)) {
      err = mendelianCheck(setMarkers(x, m), verbose = FALSE)
      if (length(err) > 0)
        stop2("The given marker data has a Mendelian error")
    }
  }
  else {
    m = marker(x, alleles = alleles, afreq = afreq, mutmod = mutmod, rate = rate)
  }

  alleles = alleles(m)
  afreq = unname(afreq(m))
  Xchrom = isXmarker(m)
  nall = nAlleles(m)
  mutations = allowsMutations(m)
  mut = mutmod(m)

  if(hasInbredFounders(x) && Xchrom)
    stop2("X chromosomal simulations are not implemented for pedigrees with inbred founders")


  if (all(m == 0)) {
    return(simpleSim(x, N, alleles = alleles, afreq = afreq,
                     ids = ids, Xchrom = Xchrom,
                     mutmod = mut, seed = seed, verbose = verbose))
  }

  #########
  # Reorder if necessary
  reorder = !hasParentsBeforeChildren(x)
  if(reorder) {
    if(verbose) cat("Note: Changing the internal order so that all parents precede their children.\n\n")
    ORIGINAL_ORDER = labels(x)
    x = parentsBeforeChildren(setMarkers(x, m))
    m = getMarkers(x, 1)[[1]]
  }

  allgenos = pedprobr::allGenotypes(nall)

  gridlist = pedprobr::genoCombinations(x, m, labels(x), make.grid = FALSE)


  if (verbose) {
    locus = if(!Xchrom) 'autosomal' else 'X-linked'
    plural_s = if(N>1) "s" else ""

    print(glue::glue("
      Conditional simulation of {N} {locus} marker{plural_s}.
      Target individuals: {toString(ids)}
      Conditioning on the following data:
      "))
    print(m)
  }

  # Forced genotypes:
  forcedTF = (m[, 1] == 0 | m[, 2] == 0) & (lengths(gridlist) == 1)
  for (id in (1:pedsize(x))[forcedTF])
    m[id, ] = allgenos[gridlist[[id]], ]

  if(verbose && any(forcedTF)) {
    cat("\nForced genotypes\n================\n")
    for (id in (1:pedsize(x))[forcedTF]) {
      allelchars = alleles[m[id, ]]
      if (Xchrom) allelchars = allelchars[1]
      cat(sprintf("Individual %s: %s\n", labels(x)[id], paste(allelchars, collapse = "/")))
    }
  }

  # Copies of x and m - used to determine simulation strategy - *before* possible loop breaking)
  xorig = setMarkers(x, NULL)
  morig = m

  if (loops <- x$UNBROKEN_LOOPS) {
    orig_ids = labels(x)
    x = breakLoops(setMarkers(x, m), loopBreakers = loopBreakers, verbose = verbose)
    m = x$MARKERS[[1]]
    loopBreakers = labels(x)[x$LOOP_BREAKERS[, 'orig']] # NB: LOOP_BREAKERS are internal ints
    gridlist = gridlist[sort.int(match(c(orig_ids, loopBreakers), orig_ids))]
  }

  ngrid = lengths(gridlist)
  SEX = x$SEX
  FIDX = x$FIDX
  MIDX = x$MIDX
  FOU = founders(x, internal = TRUE)
  NONFOU = nonfounders(x, internal = TRUE)

  lb_int = x$LOOP_BREAKERS[, "orig"]  # NULL if no loops
  lb_copy_int = x$LOOP_BREAKERS[, "copy"]

  ### Determine simulation strategy
  # Note: Using xorig and morig in this section (i.e. before loop breaking)
  # Note2: Internal IDs are obtained from x, not xorig

  # Individuals that are typed (or forced - see above). Simulations condition on these.
  typedTF = (morig[, 1] != 0 | morig[, 2] != 0)
  typed = labels(xorig)[typedTF]

  # Target individuals: untyped individuals that we seek to simulate
  targets = .mysetdiff(ids, typed)
  untyped_breakers = if (loops) .mysetdiff(loopBreakers, typed) else NULL

  # Method 2: Compute joint dist of some target individuals, brute force on the remaining
  hardsim.method2 = unique.default(c(untyped_breakers, targets))
  hardsim.method2_int = internalID(x, hardsim.method2)
  method2 = .optimal.precomputation(hardsim.method2_int, N, gridlist, Xchrom, SEX = SEX)

  ### Method 3: Extend target to ancestors of targets.
  targets.plus.ancestors = .mysetdiff(c(targets, ancestors(xorig, id = targets)), typed)

  # Only ancestors of typed individuals are hard; the others can be simple-dropped
  ancestors.of.typed = ancestors(xorig, id = typed)

  hardsim.method3 = intersect(targets.plus.ancestors, ancestors.of.typed)
  hardsim.method3 = unique.default(c(untyped_breakers, hardsim.method3))

  hardsim.method3_int = internalID(x, hardsim.method3)
  method3 = .optimal.precomputation(hardsim.method3_int, N, gridlist, Xchrom, SEX = SEX)

  if (method2$calls <= method3$calls) {
    joint_int = method2$id_int
    bruteforce_int = .mysetdiff(hardsim.method2_int, joint_int)
    simpledrop = numeric()
  } else {
    joint_int = method3$id_int
    bruteforce_int = .mysetdiff(hardsim.method3_int, joint_int)
    simpledrop = .mysetdiff(targets.plus.ancestors, ancestors.of.typed)
  }

  simpledrop_int = internalID(x, simpledrop)
  simple.founders_int = intersect(simpledrop_int, FOU)
  simple.nonfounders_int = intersect(simpledrop_int, NONFOU)

  # Ensure sensible ordering of nonfounders (for gene dropping)
  if (length(simple.nonfounders_int) > 0) {
    typed_int = internalID(x, typed)
    done = c(typed_int, joint_int, bruteforce_int, simple.founders_int)

    if(loops) {
      done_copies_int = lb_copy_int[lb_int %in% done]
      done = c(done, done_copies_int)
    }

    v = simple.nonfounders_int
    v.ordered = numeric()
    while (length(v) > 0) {
      i = match(TRUE, (FIDX[v] %in% done) & (MIDX[v] %in% done))
      if (is.na(i))
        stop2("Could not determine sensible order for gene dropping.")
      v.ordered = c(v.ordered, v[i])
      done = c(done, v[i])
      if(loops)
        done = c(done, lb_copy_int[match(v[i], lb_int)])
      v = v[-i]
    }
    simple.nonfounders_int = v.ordered
  }

  if (verbose) {
    .printLabels = function(v) if (length(v) > 0) toString(labels(x)[v]) else "None"

    print(glue::glue("\n
      Simulation strategy
      ===================
      Pre-computed joint distribution: {.printLabels(joint_int)}
      Brute force conditional simulation: {.printLabels(bruteforce_int)}
      Hardy-Weinberg sampling (founders): {.printLabels(simple.founders_int)}
      Simple gene dropping: {.printLabels(simple.nonfounders_int)}
      Required likelihood computations: {min(method2$calls, method3$calls)}
      \n"))
  }

  # create initial marker matrix: two columns per marker
  markers = rep.int(m, N)
  dim(markers) = c(pedsize(x), 2 * N)
  odd = seq_len(N) * 2 - 1

  if (length(joint_int) > 0) {
    allgenos_row_grid = t.default(pedprobr:::fastGrid(gridlist[joint_int])) # Cartesian product. Each row contains 'init' row numbers of allgenos.
    jointp = apply(allgenos_row_grid, 2, function(rownrs) {
      partial = m
      partial[joint_int, ] = allgenos[rownrs, ]
      likelihood(x, markers = partial)
    })
    likel_counter = likel_counter + length(jointp)
    if (identical(sum(jointp), 0))
      stop2("When trying to pre-compute joint probabilities: All probabilities zero. Mendelian error?")

    # fill the rows of the 'joint' individuals
    sample_rows = allgenos_row_grid[, suppressWarnings(sample.int(length(jointp), size = N,
      replace = TRUE, prob = jointp))]
    markers[joint_int, odd] = allgenos[sample_rows, 1]
    markers[joint_int, odd + 1] = allgenos[sample_rows, 2]
  }

  if (length(bruteforce_int) > 0) {
    for (i in bruteforce_int) {
      gridi = gridlist[[i]]
      rowsample = unlist(lapply(2 * seq_len(N), function(mi) {
        partial = m
        partial[] = markers[, c(mi - 1, mi)]  # preserves all attributes of the m.
        probs = unlist(lapply(gridi, function(r) {
          partial[i, ] = allgenos[r, ]
          li = likelihood(x, markers = partial)
        }))

        if (sum(probs) == 0) {
          print(partial)
          stop2("\nIndividual ", labels(x)[i], ": All genotype probabilities zero. Mendelian error?")
        }
        sample(gridi, size = 1, prob = probs)
      }))
      markers[i, odd] = allgenos[rowsample, 1]
      markers[i, odd + 1] = allgenos[rowsample, 2]
    }
    likel_counter = likel_counter + N * sum(ngrid[bruteforce_int])
  }

  if (length(simpledrop) > 0) {
    # HW sampling of founders
    if (!Xchrom) {
      markers[simple.founders_int, ] = sample.int(nall, size = 2 * N * length(simple.founders_int),
                                                  replace = TRUE, prob = afreq)
    }
    else {
      for (f in simple.founders_int)
        markers[f, ] = switch(SEX[f],
          rep(sample.int(nall, size = N, replace = TRUE, prob = afreq), each = 2),
          sample.int(nall, size = 2 * N, replace = TRUE, prob = afreq))
    }

    # Founder inbreeding
    fou_inb = founderInbreeding(x)
    fi = which(fou_inb > 0)
    for(i in fi) {
      copy = as.logical(rbinom(N, 1, prob = fou_inb[i]))
      markers[simple.founders_int[i], odd[copy] + 1] = markers[simple.founders_int[i], odd[copy]]
    }

    # Genotypes of the duplicated individuals. Some of these may be ungenotyped...save time by excluding these?
    markers[lb_copy_int, ] = markers[lb_int, ]

    for (id in simple.nonfounders_int) {
      if (!Xchrom) {
        paternal = markers[FIDX[id], odd + .rand01(N)]
        maternal = markers[MIDX[id], odd + .rand01(N)]
        if (mutations) {
          paternal = .mutate(paternal, mut$male)
          maternal = .mutate(maternal, mut$female)
        }
      } else {
        maternal = markers[MIDX[id], odd + .rand01(N)]
        if (mutations)
          maternal = .mutate(maternal, mut$female)

        if (SEX[id] == 1)
          paternal = maternal  # if boy, only maternal
        else {
          paternal = markers[FIDX[id], odd]  # if girl, fathers allele is forced
          if (mutations)
            paternal = .mutate(paternal, mut$male)
        }
      }
      markers[id, odd] = paternal
      markers[id, odd + 1] = maternal
    }
  }

  if (loops) {
    markers = markers[-x$LOOP_BREAKERS[, 2], ]
    x = tieLoops(x)
  }

  # removing genotypes for individuals that are i) originally untyped and ii) unavailable
  typedTF[forcedTF] = FALSE

  unavailable = !labels(x) %in% ids
  markers[!typedTF & unavailable, ] = 0
  attrib = attributes(morig)
  attrib$name = NA_character_

  # Odd column numbers (needed below)
  odd = seq_len(N) * 2 - 1

  # Sort genotypes
  a1 = markers[, odd]
  a2 = markers[, odd + 1]
  swap = a1 > a2

  markers[, odd][swap] = a2[swap]
  markers[, odd + 1][swap] = a1[swap]

  # List of marker objects
  mlist = lapply(odd, function(k) {
    mk = markers[, c(k, k + 1)]
    attributes(mk) = attrib
    mk
  })

  # Attach markers
  class(mlist) = "markerList"
  x = setMarkers(x, mlist, checkCons = FALSE)

  # If ped was reordered, revert to original
  if(reorder)
    x = reorderPed(x, internalID(x, ORIGINAL_ORDER), internal = TRUE)

  if (verbose) {
    seconds = (proc.time() - starttime)[["elapsed"]]
    print(glue::glue("
      Simulation finished
      ===================
      Calls to `likelihood()`: {likel_counter}
      Total time used: {round(seconds, 2)} seconds
      \n"))
  }

  x
}

.mutate = function(allele_vec, mutmatrix) {
  nall = ncol(mutmatrix)
  vapply(allele_vec,
       function(a) sample.int(nall, size = 1, prob = mutmatrix[a,]),
       FUN.VALUE = 1L)
}

.optimal.precomputation = function(target_int, Nsim, gridlist, Xchrom, SEX = NULL) {
  if (length(target_int) == 0)
    return(list(calls = 0, id_int = target_int))
  if (!Xchrom) {
    nT = length(target_int)
    ngrid_target = lengths(gridlist[target_int])
    callsCum = sapply(1:nT, function(ci)
      prod(ngrid_target[seq_len(ci)]) + Nsim * sum(ngrid_target[seq_len(nT - ci) + ci]))
    minimum_index = which.min(callsCum)
    opt = list(calls = callsCum[minimum_index], id_int = target_int[seq_len(minimum_index)])
  }
  else {
    males = target_int[SEX[target_int] == 1]
    females = target_int[SEX[target_int] == 2]
    ngrid_m = lengths(gridlist[males], use.names = FALSE)
    ngrid_f = lengths(gridlist[females], use.names = FALSE)
    nM = length(males)
    nF = length(females)

    # Find optimal 'init' values for males/females (fewest likelihood calls)
    callsCum = matrix(nrow = nM + 1, ncol = nF + 1)
    for (ma in 0:nM) for (fe in 0:nF)
      callsCum[ma + 1, fe + 1] = prod(ngrid_m[seq_len(ma)]) * prod(ngrid_f[seq_len(fe)]) +
        Nsim * sum(c(ngrid_m[seq_len(nM - ma) + ma], ngrid_f[seq_len(nF - fe) + fe]))

    minimum_index = arrayInd(which.min(callsCum), dim(callsCum))
    id_int = c(males[seq_len(minimum_index[1] - 1)], females[seq_len(minimum_index[2] -
        1)])
    opt = list(calls = callsCum[minimum_index], id_int = id_int)
  }
  return(opt)
}


#' Unconditional marker simulation
#'
#' Unconditional simulation of unlinked markers
#'
#' Simple genotype simulation, performed by first distributing alleles randomly
#' to all founders, followed by Mendelian _gene dropping_ down throughout the
#' pedigree (i.e., for each non-founder a random allele is selected from each of
#' the parents). Finally, genotypes of individuals not included in `ids` are
#' removed.
#'
#' @param x A `ped` object.
#' @param N A positive integer: the number of markers to be simulated.
#' @param alleles A vector with allele labels.
#' @param afreq A numeric vector of allele frequencies. If missing, the alleles
#'   are assumed to be equifrequent.
#' @param ids A vector containing ID labels of those pedigree members whose
#'   genotypes should be simulated.
#' @param Xchrom A logical: X linked markers or not?
#' @param mutmod A list of mutation matrices named 'female' and 'male'.
#' @param seed An integer seed for the random number generator (optional).
#' @param verbose A logical.
#'
#' @return A `ped` object equal to `x` except its `MARKERS` entry, which
#'   consists of the `N` simulated markers.
#'
#' @seealso [markerSim()]
#'
#' @examples
#' x = nuclearPed(1)
#' simpleSim(x, N = 3, afreq = c(0.5, 0.5))
#'
#' y = cousinPed(1, child = TRUE)
#' simpleSim(y, N = 3, alleles = LETTERS[1:10])
#'
#' @importFrom utils head
#' @export
simpleSim = function(x, N, alleles, afreq, ids, Xchrom = FALSE,
                   mutmod = NULL, seed = NULL, verbose = TRUE) {

  if(hasInbredFounders(x) && Xchrom)
    stop2("X chromosomal simulations are not implemented for pedigrees with inbred founders")

  starttime = proc.time()

  if (missing(alleles)) {
    if (missing(afreq))
      stop2("Arguments `alleles` and `afreq` cannot both be missing")
    alleles = seq_along(afreq)
  }

  nall = length(alleles)
  if (missing(afreq))
    afreq = rep(1, nall)/nall

  variableSNPfreqs = nall == 2 && length(afreq) != 2 && !Xchrom
  if (variableSNPfreqs)
    afreq = rep(afreq, length = N)

  if (missing(ids))
    ids = labels(x)

  mutations = !is.null(mutmod)
  # if (mutations) {
    # If single matrix given: make sex specific list
    # if (is.matrix(mutmod))
    #  mutmod = pedmut::mutationModel("custom", matrix = mutmod)

    # Always validate
    # pedmut::validateMutationModel(mutmod, alleles)
  # }

  # Reorder if necessary
  reorder = !hasParentsBeforeChildren(x)
  if(reorder) {
    if(verbose) cat("Note: Changing the internal order so that all parents precede their children.\n\n")
    ORIGINAL_ORDER = labels(x)
    x = parentsBeforeChildren(x)
  }

  if (verbose) {
    locus = if(!Xchrom) 'autosomal' else 'X-linked'
    plural_s = if(N>1) "s" else ""

    print(glue::glue("
    Unconditional simulation of {N} {locus} marker{plural_s}.
    Individuals: {toString(ids)}
    "))
    if (variableSNPfreqs) {
      cat("Alleles:", toString(alleles), "\n")
      cat("Variable frequencies: p =", toString(head(afreq, 5)), ifelse(N > 5, "...\n", "\n"))
    }
    else {
      cat("Allele frequencies:\n")
      # hack to get 1 sp indent
      afr = afreq; names(afr) = alleles
      print(data.frame(as.list(afr), check.names = FALSE), row.names = FALSE)
    }
    cat("Mutation model:", if(mutations) "Yes" else "No", "\n\n")
  }

  if (Xchrom)
    m = .genedrop_X(x, N, nall, afreq, mutmod, seed)
  else
    m = .genedrop_AUT(x, N, nall, afreq, mutmod, seed)

  # Remove genotypes for individuals not in `ids`
  m[!labels(x) %in% ids, ] = 0L

  # Odd column numbers (needed several times below)
  odd = seq_len(N) * 2 - 1

  # Sort genotypes
  a1 = m[, odd]
  a2 = m[, odd + 1]
  swap = a1 > a2

  m[, odd][swap] = a2[swap]
  m[, odd + 1][swap] = a1[swap]

  # Create marker objects
  if (variableSNPfreqs) {
    frqs = as.vector(rbind(afreq, 1 - afreq))
    attrib = attributes(marker(x, alleles = alleles, afreq = NULL,
                               chrom = NA, mutmod = mutmod))
    mlist = lapply(odd, function(k) {
      mk = m[, c(k, k + 1)]
      atr = attrib
      atr$afreq = frqs[c(k, k + 1)]
      attributes(mk) = atr
      mk
    })
  }
  else {
    attrib = attributes(marker(x, alleles = alleles, afreq = afreq,
                               chrom = ifelse(Xchrom, 23, NA), mutmod = mutmod))
    mlist = lapply(odd, function(k) {
        mk = m[, c(k, k + 1)]
        attributes(mk) = attrib
        mk
    })
  }

  # Attach markers
  class(mlist) = "markerList"
  x = setMarkers(x, mlist, checkCons = FALSE)

  # If ped was reordered, revert to original
  if(reorder) {
    x = reorderPed(x, internalID(x, ORIGINAL_ORDER), internal = TRUE)
  }

  if (verbose) {
    seconds = (proc.time() - starttime)[["elapsed"]]
    print(glue::glue("
      Simulation finished.
      Calls to `likelihood()`: 0.
      Total time used: {round(seconds, 2)} seconds.
      "))
  }
  x
}


.genedrop_AUT = function(x, N, nall, afreq, mutmod, seed) {
  FIDX = x$FIDX
  MIDX = x$MIDX
  FOU = founders(x, internal = TRUE)
  NONFOU = nonfounders(x, internal = TRUE)
  mutations = !is.null(mutmod)

  if (!is.null(seed)) set.seed(seed)

  # Initialise the marker matrix
  m = matrix(0L, ncol = 2 * N, nrow = pedsize(x))
  odd = seq_len(N) * 2 - 1

  # Sample alleles for the founders
  variableSNPfreqs = nall == 2 && length(afreq) != 2
  if (variableSNPfreqs)
    fou_alleles = unlist(lapply(afreq, function(f)
      sample.int(2, length(FOU)*2, replace = TRUE, prob = c(f, 1 - f))))
  else
    fou_alleles = sample.int(nall, size = N*length(FOU)*2, replace = TRUE, prob = afreq)

  m[FOU, ] = fou_alleles

  # Account for inbred founders
  if(hasInbredFounders(x)) {
    fou_inb = founderInbreeding(x)
    fi = which(fou_inb > 0)
    for(i in fi) {
      copy = as.logical(rbinom(N, 1, prob = fou_inb[i]))
      m[FOU[i], odd[copy] + 1] = m[FOU[i], odd[copy]]
    }
  }

  # Drop alleles down through the pedigree
  for (id in NONFOU) {
    paternal = m[FIDX[id], odd + .rand01(N)]
    maternal = m[MIDX[id], odd + .rand01(N)]
    if (mutations) {
      paternal = .mutate(paternal, mutmod$male)
      maternal = .mutate(maternal, mutmod$female)
    }
    m[id, odd] = paternal
    m[id, odd + 1] = maternal
  }
  m
}

.genedrop_X = function(x, N, nall, afreq, mutmod, seed) {
  FIDX = x$FIDX
  MIDX = x$MIDX
  SEX = x$SEX
  FOU = founders(x, internal = TRUE)
  NONFOU = nonfounders(x, internal = TRUE)
  mutations = !is.null(mutmod)

  # Initialise the marker matrix
  m = matrix(0L, ncol = 2 * N, nrow = pedsize(x))
  odd = seq_len(N) * 2 - 1

  if (!is.null(seed)) set.seed(seed)

  for (f in FOU) {
    if (SEX[f] == 1)
      m[f, ] = rep(sample.int(nall, size = N, replace = TRUE, prob = afreq), each = 2)
    if (SEX[f] == 2)
      m[f, ] = sample.int(nall, size = 2 * N, replace = TRUE, prob = afreq)
  }
  for (id in NONFOU) {
    maternal = m[MIDX[id], odd + .rand01(N)]
    if (mutations)
      maternal = .mutate(maternal, mutmod$female)

    if (SEX[id] == 1) {
      paternal = maternal  # if boy, only maternal
    }
    else {
      paternal = m[FIDX[id], odd]  # if girl, fathers allele is forced
      if (mutations)
        paternal = .mutate(paternal, mutmod$male)
    }
    m[id, odd] = paternal
    m[id, odd + 1] = maternal
  }
  m
}

Try the forrel package in your browser

Any scripts or data that you put into this service are public.

forrel documentation built on Sept. 11, 2024, 9:15 p.m.