Description Author(s) References See Also Examples
R code for Chapter 5 exercise solutions.
Simon Wood <simon@r-project.org>
Maintainer: Simon Wood <simon@r-project.org>
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | library(gamair); library(mgcv)
## Q.4 P-spline
## a)
library(splines)
pspline.XB <- function(x,q=10,m=2,p.m=2)
# Get model matrix and sqrt Penalty matrix for P-spline
{ # first make knot sequence, k
k <- seq(min(x),max(x),length=q-m)
dk <- k[2]-k[1]
k <- c(k[1]-dk*((m+1):1),k,k[q-m]+dk*(1:(m+1)))
# now get model matrix and root penalty
X <- splineDesign(k,x,ord=m+2)
B <- diff(diag(q),difference=p.m)
list(X=X,B=B)
} ## pspline.XB
## b)
n<-100
x <- sort(runif(n))
ps <- pspline.XB(x,q=9,m=2,p.m=2)
par(mfrow=c(3,3)) # plot the original basis functions
for (i in 1:9) plot(x,ps$X[,i],type="l")
## c)
S <- t(ps$B)%*%ps$B
es <- eigen(S);U <- es$vectors
XU <- ps$X%*%U # last p.m cols are penalty null space
par(mfrow=c(3,3)) # plot penalty eigenbasis functions
for (i in 1:9) plot(x,XU[,i],type="l")
## d)
qrx <- qr(ps$X) # QR of X
R <- qr.R(qrx)
RSR <- solve(t(R),S);RSR <- t(solve(t(R),t(RSR)))
ersr <- eigen(RSR)
U <- ersr$vectors
Q <- qr.Q(qrx)
QU <- Q%*%U
par(mfrow=c(3,3)) # plot the natural basis functions
for (i in 1:9) plot(x,QU[,i],type="l")
## Q.5
test1<-function(x,z,sx=0.3,sz=0.4)
{ 1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+
0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2)
}
n <- 200
x <- matrix(runif(2*n),n,2)
f <- test1(x[,1],x[,2])
y <- f + rnorm(n)*.1
eta <- function(r)
{ # thin plate spline basis functions
ind <- r<=0
eta <- r
eta[!ind] <- r[!ind]^2*log(r[!ind])/(8*pi)
eta[ind] <- 0
eta
} ## eta
XSC <- function(x,xk=x)
{ # set up t.p.s., given covariates, x, and knots, xk
n <- nrow(x);k <- nrow(xk)
X <- matrix(1,n,k+3) # tps model matrix
for (j in 1:k) {
r <- sqrt((x[,1]-xk[j,1])^2+(x[,2]-xk[j,2])^2)
X[,j] <- eta(r)
}
X[,j+2] <- x[,1];X[,j+3] <- x[,2]
C <- matrix(0,3,k+3) # tps constraint matrix
S <- matrix(0,k+3,k+3)# tps penalty matrix
for (i in 1:k) {
C[1,i]<-1;C[2,i] <- xk[i,1];C[3,i] <- xk[i,2]
for (j in i:k) S[j,i]<-S[i,j] <-
eta(sqrt(sum((xk[i,]-xk[j,])^2)))
}
list(X=X,S=S,C=C)
} ## XSC
absorb.con <- function(X,S,C)
{ # get constraint null space, Z...
qrc <- qr(t(C)) # QR=C', Q=[Y,Z]
m <- nrow(C);k <- ncol(X)
X <- t(qr.qty(qrc,t(X)))[,(m+1):k] # form XZ
# now form Z'SZ ...
S <- qr.qty(qrc,t(qr.qty(qrc,t(S))))[(m+1):k,(m+1):k]
list(X=X,S=S,qrc=qrc)
} ## absorb.con
fit.tps <- function(y,x,xk=x,lambda=0)
{ tp <- XSC(x,xk) # get tps matrices
tp <- absorb.con(tp$X,tp$S,tp$C) # make unconstrained
ev <- eigen(tp$S,symmetric=TRUE) # get sqrt penalty, rS
rS <- ev$vectors%*%(ev$values^.5*t(ev$vectors))
X <- rbind(tp$X,rS*sqrt(lambda)) # augmented model matrix
z <- c(y,rep(0,ncol(rS))) # augmented data
beta <- coef(lm(z~X-1)) # fit model
beta <- qr.qy(tp$qrc,c(0,0,0,beta)) # backtransform beta
} ## fit.tps
eval.tps <- function(x,beta,xk)
{ # evaluate tps at x, given parameters, beta, and knots, xk.
k <- nrow(xk);n <- nrow(x)
f <- rep(beta[k+1],n)
for (i in 1:k) {
r <- sqrt((x[,1]-xk[i,1])^2+(x[,2]-xk[i,2])^2)
f <- f + beta[i]*eta(r)
}
f <- f + beta[k+2]*x[,1] + beta[k+3]*x[,2]
} ## eval.tps
## select some `knots', xk ...
ind <- sample(1:n,100,replace=FALSE)
xk <- x[ind,]
## fit model ...
beta <- fit.tps(y,x,xk=xk,lambda=.01)
## contour truth and fit
par(mfrow=c(1,2))
xp <- matrix(0,900,2)
x1<-seq(0,1,length=30);x2<-seq(0,1,length=30)
xp[,1]<-rep(x1,30);xp[,2]<-rep(x2,rep(30,30))
truth<-matrix(test1(xp[,1],xp[,2]),30,30)
contour(x1,x2,truth)
fit <- matrix(eval.tps(xp,beta,xk),30,30)
contour(x1,x2,fit)
## Q.6 smooth.construct
tf <- function(x,xj,j) {
## generate jth tent function from set defined by knots xj
dj <- xj*0;dj[j] <- 1
approx(xj,dj,x)$y
}
tf.X <- function(x,xj) {
## tent function basis matrix given data x
## and knot sequence xj
nk <- length(xj); n <- length(x)
X <- matrix(NA,n,nk)
for (j in 1:nk) X[,j] <- tf(x,xj,j)
X
}
smooth.construct.pl.smooth.spec<-function(object,data,knots) {
## a piecewise linear smooth constructor method function
m <- object$p.order[1]
if (is.na(m)) m <- 2 ## default
if (m<1) stop("silly m supplied")
if (object$bs.dim<0) object$bs.dim <- 20 ## default
x <- data[[object$term]] ## the data
k <- knots[[object$term]] ## will be NULL if none supplied
if (is.null(k)) { # space knots through data
k <- seq(min(x),max(x),length=object$bs.dim)
} else {
if (length(k)!=object$bs.dim) # right number of knots?
k <- seq(min(k),max(k),length=object$bs.dim)
}
object$X <- tf.X(x,k)
if (!object$fixed) { # create the penalty matrix
object$S[[1]] <- crossprod(diff(diag(object$bs.dim),difference=m))
}
object$rank <- object$bs.dim - m # penalty rank
object$null.space.dim <- m # dim. of unpenalized space
## store "tr" specific stuff ...
object$knots <- k
object$df <- ncol(object$X) # maximum DoF (if unconstrained)
class(object) <- "pl.smooth" # Give object a class
object
}
Predict.matrix.pl.smooth<-function(object,data)
## prediction method function for the `pl' smooth class
{ x <- data[[object$term]]
X <- tf.X(x,object$knots)
X # return the prediction matrix
}
# an example, using the new class....
require(mgcv)
set.seed(10)
dat <- gamSim(1,n=400,scale=2)
b <- gam(y~s(x0,bs="pl",m=2)+s(x1,bs="pl",m=2) +
s(x2,bs="pl",m=3)+s(x3,bs="pl",m=2),
data=dat,method="REML")
plot(b,pages=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.