Description Author(s) References See Also Examples
R code for Chapter 6 exercise solutions.
Simon Wood <simon@r-project.org>
Maintainer: Simon Wood <simon@r-project.org>
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | library(gamair); library(mgcv)
## code from Chapter 5 solutions...
## Q.3
pspline.XB <- function(x,q=10,m=2,p.m=2)
# Get model matrix and sqrt Penalty matrix for P-spline
{ # first make knot sequence, k
k <- seq(min(x),max(x),length=q-m)
dk <- k[2]-k[1]
k <- c(k[1]-dk*((m+1):1),k,k[q-m]+dk*(1:(m+1)))
# now get model matrix and root penalty
X <- splineDesign(k,x,ord=m+2)
B <- diff(diag(q),difference=p.m)
list(X=X,B=B)
} ## pspline.XB
## a) and b)
fit.wPs <- function(y,X,B,lambda=0,w=rep(1,length(y)))
# fit to y by weighted penalized least squares, X is
# model matrix, B is sqrt penalty, lambda is smoothing p.
{ w <- as.numeric(w^.5)
n <- nrow(X)
X<-rbind(w*X,sqrt(lambda)*B)
y<-c(w*y,rep(0,nrow(B)))
b <- lm(y~X-1) # actually estimate model
trA <- sum(influence(b)$hat[1:n])
rss <- sum((y-fitted(b))[1:n]^2) ## not really needed here
list(trA=trA,rss=rss,b=coef(b))
}
fitPoiPs <- function(y,X,B,lambda=0)
# Fit Poisson model with log-link by P-IRLS
{ mu <- y;mu[mu==0] <- .1
eta <- log(mu)
converged <- FALSE
dev <- ll.sat <- sum(dpois(y,y,log=TRUE))
while (!converged) {
z <- (y-mu)/mu + eta
w <- mu
fPs <- fit.wPs(z,X,B,lambda,w)
eta <- X%*%fPs$b
mu=exp(eta)
old.dev <- dev
dev <- 2*(ll.sat-sum(dpois(y,mu,log=TRUE)))
if (abs(dev-old.dev)<1e-6*dev) converged <- TRUE
}
list(dev=dev,rss=fPs$rss,trA=fPs$trA,b=fPs$b,fv=mu)
}
## c)
## simulate data as in question...
set.seed(1)
f <- function(x) .04*x^11*(10*(1-x))^6+2*(10*x)^3*(1-x)^10
n <- 100;x <- sort(runif(n))
y <- rpois(rep(1,n),exp(f(x)))
## fitting...
library(splines)
ps <- pspline.XB(x,q=10,m=2,p.m=2)
lambda <- 1e-4;reps <- 60
sp <- trA <- gcv <- rep(0,reps)
for (i in 1:reps) { # loop through trial s.p.s
fps <- fitPoiPs(y,ps$X,ps$B,lambda=lambda)
trA[i] <- fps$trA;sp[i] <- lambda
gcv[i] <- n*fps$dev/(n-trA[i])^2
lambda <- lambda*1.3
}
plot(trA,gcv,type="l")
fps1 <- fitPoiPs(y,ps$X,ps$B,lambda=sp[gcv==min(gcv)])
plot(x,y);lines(x,fps1$fv)
## Q.6 Fellner-Schall for GCV and AIC...
## b)
library(mgcv);library(MASS)
sm <- smoothCon(s(times,k=20),data=mcycle)[[1]]
X <- sm$X; S <- sm$S[[1]]; y <- mcycle$accel
lambda <- 1; n <- length(y)
XX <- crossprod(X);
with(mcycle,plot(times,accel))
for (i in 1:20) {
R <- chol(XX+lambda*S)
b <- backsolve(R,forwardsolve(t(R),t(X) %*% y))
f <- X %*% b
lines(mcycle$times,f,col="grey")
HiS <- backsolve(R,forwardsolve(t(R),S))
HiH <- backsolve(R,forwardsolve(t(R),XX))
tau <- sum(diag(HiH))
if (i>1) { ## convergence test
if (abs(tau-tau0)<1e-5*tau) break
}
tau0 <- tau
dt.dl <- -sum(t(HiH)*HiS)
db.dl <- -HiS %*% b
dD.db <- 2*t(X) %*% (f - y)
lambda <- -sum(2*(y-f)^2)/(n-tau)*dt.dl/sum(db.dl*dD.db) * lambda
}
lines(mcycle$times,f)
## c)
y <- c(12,14,33,50,67,74,123,141,165,204,253,246,240)
t <- 1:13
sm <- smoothCon(s(t),data=data.frame(t=t,y=y))[[1]]
X <- sm$X; S <- sm$S[[1]]; lambda <- .001; n <- length(y)
plot(t,y)
mu <- y; eta <- log(mu)
for (i in 1:50) {
w <- mu; z <- (y-mu)/mu + eta
XWX <- crossprod(sqrt(w)*X)
R <- chol(XWX+lambda*S)
b <- backsolve(R,forwardsolve(t(R),t(X) %*% (w*z)))
eta <- drop(X %*% b);mu <- exp(eta)
lines(t,mu,col="grey")
HiS <- backsolve(R,forwardsolve(t(R),S))
HiH <- backsolve(R,forwardsolve(t(R),XWX))
tau <- sum(diag(HiH))
if (i>1) { ## convergence test
if (abs(tau-tau0)<1e-5*tau) break
}
tau0 <- tau
dt.dl <- -sum(t(HiH)*HiS)
db.dl <- -HiS %*% b
dl.db <- t(X) %*% (y-mu) ## especially simple for this case
lambda <- dt.dl/sum(db.dl*dl.db) * lambda
}
i;tau;lines(t,mu)
## Q.8 log det stabilty (or lack of)
set.seed(1);lam <- 1
A1 <- crossprod(diff(diag(3),diff=1))
A2 <- crossprod(matrix(runif(9),3,3))
A <- matrix(0,5,5);A[1:3,1:3] <- A1
A[3:5,3:5] <- A[3:5,3:5] + lam * A2
ldetA.qr <- ldetA.ev <- ldetA.svd <- ldetA <-
rho <- seq(-40,-25,length=100)
for (i in 1:length(rho)) {
lam <- exp(rho[i])
A <- matrix(0,5,5);A[1:3,1:3] <- A1
A[3:5,3:5] <- A[3:5,3:5] + lam * A2
ea1 <- eigen(A1)
Q <- diag(5);Q[1:3,1:3] <- ea1$vectors
At <- matrix(0,5,5)
At[3:5,3:5] <- At[3:5,3:5] + lam * A2
At <- t(Q)%*%At%*%Q
diag(At)[1:2] <- diag(At)[1:2]+ea1$values[1:2]
ldetA[i] <- sum(log(abs(diag(qr.R(qr(At))))))
ldetA.qr[i] <- sum(log(abs(diag(qr.R(qr(A))))))
ldetA.ev[i] <- sum(log(abs(eigen(A)$values)))
ldetA.svd[i] <- sum(log(abs(svd(A)$d)))
}
plot(rho,ldetA,type="l") ## nice and stable
## not...
lines(rho,ldetA.qr,lty=2)
lines(rho,ldetA.ev,lty=3)
lines(rho,ldetA.svd,lty=4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.