Description Author(s) References See Also Examples
R code from Chapter 3 of the second edition of ‘Generalized Additive Models: An Introduction with R’ is in the examples section below.
Simon Wood <simon@r-project.org>
Maintainer: Simon Wood <simon@r-project.org>
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | library(gamair); library(mgcv)
## 3.2.2
x <- c(.6,1.5); y <- c(.02,.9)
ms <- exp(-x*4) # set initial values at lower left
glm(y ~ I(-x)-1,family=gaussian(link=log),mustart=ms)
ms <- exp(-x*0.1) # set initial values at upper right
glm(y ~ I(-x)-1,family=gaussian(link=log),mustart=ms)
## 3.3.1
heart <- data.frame(ck = 0:11*40+20,
ha=c(2,13,30,30,21,19,18,13,19,15,7,8),
ok=c(88,26,8,5,0,1,1,1,1,0,0,0))
p <- heart$ha/(heart$ha+heart$ok)
plot(heart$ck,p,xlab="Creatinine kinase level",
ylab="Proportion Heart Attack")
mod.0 <- glm(cbind(ha,ok) ~ ck, family=binomial(link=logit),
data=heart)
mod.0 <- glm(cbind(ha,ok) ~ ck, family=binomial, data=heart)
mod.0
(271.7-36.93)/271.7
1-pchisq(36.93,10)
par(mfrow=c(2,2))
plot(mod.0)
plot(heart$ck, p, xlab="Creatinine kinase level",
ylab="Proportion Heart Attack")
lines(heart$ck, fitted(mod.0))
mod.2 <- glm(cbind(ha,ok)~ck+I(ck^2)+I(ck^3),family=binomial,
data=heart)
mod.2
par(mfrow=c(2,2))
plot(mod.2)
par(mfrow=c(1,1))
plot(heart$ck,p,xlab="Creatinine kinase level",
ylab="Proportion Heart Attack")
lines(heart$ck,fitted(mod.2))
anova(mod.0,mod.2,test="Chisq")
## 3.3.2
y <- c(12,14,33,50,67,74,123,141,165,204,253,246,240)
t <- 1:13
plot(t+1980,y,xlab="Year",ylab="New AIDS cases",ylim=c(0,280))
m0 <- glm(y~t,poisson)
m0
par(mfrow=c(2,2))
plot(m0)
m1 <- glm(y~t+I(t^2),poisson)
plot(m1)
summary(m1)
anova(m0,m1,test="Chisq")
beta.1 <- summary(m1)$coefficients[2,]
ci <- c(beta.1[1]-1.96*beta.1[2],beta.1[1]+1.96*beta.1[2])
ci ## print 95% CI for beta_1
new.t <- seq(1,13,length=100)
fv <- predict(m1,data.frame(t=new.t),se=TRUE)
par(mfrow=c(1,1))
plot(t+1980,y,xlab="Year",ylab="New AIDS cases",ylim=c(0,280))
lines(new.t+1980,exp(fv$fit))
lines(new.t+1980,exp(fv$fit+2*fv$se.fit),lty=2)
lines(new.t+1980,exp(fv$fit-2*fv$se.fit),lty=2)
## 3.3.3
psurv <- function(surv,time="t",censor="d",event="z") {
## create data frame to fit Cox PH as Poisson model.
## surv[[censor]] should be 1 for event or zero for censored.
if (event %in% names(surv)) warning("event name clashes")
surv <- as.data.frame(surv)[order(surv[[time]]),] # t order
et <- unique(surv[[time]][surv[[censor]]==1]) # unique times
es <- match(et,surv[[time]]) # starts of risk sets in surv
n <- nrow(surv); t <- rep(et,1+n-es) # times for risk sets
st <- cbind(0,
surv[unlist(apply(matrix(es),1,function(x,n) x:n,n=n)),])
st[st[[time]]==t&st[[censor]]!=0,1] <- 1 # signal events
st[[time]] <- t ## reset event time to risk set time
names(st)[1] <- event
st
} ## psurv
require(gamair); data(bone); bone$id <- 1:nrow(bone)
pb <- psurv(bone); pb$tf <- factor(pb$t)
b <- glm(z ~ tf + trt - 1,poisson,pb)
chaz <- tapply(fitted(b),pb$id,sum) ## by subject cum. hazard
mrsd <- bone$d - chaz ## Martingale residuals
drop1(b,test="Chisq") ## test for effect - no evidence
te <- sort(unique(bone$t[bone$d==1])) ## event times
## predict survivor function for "allo"...
pd <- data.frame(tf=factor(te),trt=bone$trt[1])
fv <- predict(b,pd)
H <- cumsum(exp(fv)) ## cumulative hazard
plot(stepfun(te,c(1,exp(-H))),do.points=FALSE,ylim=c(0,1),
xlim=c(0,550),main="",ylab="S(t)",xlab="t (days)")
## add s.e. bands...
X <- model.matrix(~tf+trt-1,pd)
J <- apply(exp(fv)*X,2,cumsum)
se <- diag(J%*%vcov(b)%*%t(J))^.5
lines(stepfun(te,c(1,exp(-H+se))),do.points=FALSE,lty=2)
lines(stepfun(te,c(1,exp(-H-se))),do.points=FALSE,lty=2)
## 3.3.4
al <- data.frame(y=c(435,147,375,134),gender=
as.factor(c("F","F","M","M")),faith=as.factor(c(1,0,1,0)))
al
mod.0 <- glm(y ~ gender + faith, data=al, family=poisson)
model.matrix(mod.0)
mod.0
fitted(mod.0)
mod.1 <- glm(y~gender*faith,data=al,family=poisson)
model.matrix(mod.1)
mod.1
anova(mod.0,mod.1,test="Chisq")
## 3.3.5
data(sole)
sole$off <- log(sole$a.1-sole$a.0)# model offset term
sole$a<-(sole$a.1+sole$a.0)/2 # mean stage age
solr<-sole # make copy for rescaling
solr$t<-solr$t-mean(sole$t)
solr$t<-solr$t/var(sole$t)^0.5
solr$la<-solr$la-mean(sole$la)
solr$lo<-solr$lo-mean(sole$lo)
b <- glm(eggs ~ offset(off)+lo+la+t+I(lo*la)+I(lo^2)+I(la^2)
+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+I(la^3)+I(t^3)+
I(lo*la*t)+I(lo^2*la)+I(lo*la^2)+I(lo^2*t)+
I(la^2*t)+I(la*t^2)+I(lo*t^2)+ a +I(a*t)+I(t^2*a),
family=quasi(link=log,variance="mu"),data=solr)
summary(b)
b1 <- update(b, ~ . - I(lo*t))
b4 <- update(b1, ~ . - I(lo*la*t) - I(lo*t^2) - I(lo^2*t))
anova(b,b4,test="F")
par(mfrow=c(1,2)) # split graph window into 2 panels
plot(fitted(b4)^0.5,solr$eggs^0.5) # fitted vs. data plot
plot(fitted(b4)^0.5,residuals(b4)) # resids vs. sqrt(fitted)
## 3.5.1
rf <- residuals(b4,type="d") # extract deviance residuals
## create an identifier for each sampling station
solr$station <- factor(with(solr,paste(-la,-lo,-t,sep="")))
## is there evidence of a station effect in the residuals?
solr$rf <-rf
rm <- lme(rf~1,solr,random=~1|station)
rm0 <- lm(rf~1,solr)
anova(rm,rm0)
## following is slow...
## Not run:
library(MASS)
form <- eggs ~ offset(off)+lo+la+t+I(lo*la)+I(lo^2)+
I(la^2)+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+I(la^3)+
I(t^3)+I(lo*la*t)+I(lo^2*la)+I(lo*la^2)+I(lo^2*t)+
I(la^2*t)+I(la*t^2)+I(lo*t^2)+ # end log spawn
a +I(a*t)+I(t^2*a)
b <- glmmPQL(form,random=list(station=~1),
family=quasi(link=log,variance="mu"),data=solr)
summary(b)
form4 <- eggs ~ offset(off)+lo+la+t+I(lo*la)+I(lo^2)+
I(la^2)+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+I(la^3)+
I(t^3)+I(lo^2*la)+I(lo*la^2)+
I(la^2*t)+I(lo*t^2)+ # end log spawn
a +I(a*t)+I(t^2*a)
b4 <- glmmPQL(form4,random=list(station=~1),
family=quasi(link=log,variance="mu"),data=solr)
fv <- exp(fitted(b4)+solr$off) # note need to add offset
resid <- solr$egg-fv # raw residuals
plot(fv^.5,solr$eggs^.5)
abline(0,1,lwd=2)
plot(fv^.5,resid/fv^.5)
plot(fv^.5,resid)
fl<-sort(fv^.5)
## add 1 s.d. and 2 s.d. reference lines
lines(fl,fl);lines(fl,-fl);lines(fl,2*fl,lty=2)
lines(fl,-2*fl,lty=2)
intervals(b4,which="var-cov")
## 3.5.2
form5 <- eggs ~ offset(off)+lo+la+t+I(lo*la)+I(lo^2)+
I(la^2)+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+I(la^3)+
I(t^3)+I(lo^2*la)+I(lo*la^2)+
I(la^2*t)+I(lo*t^2)+ # end log spawn
a +I(a*t)+I(t^2*a) + s(station,bs="re")
b <- gam(form5,family=quasi(link=log,variance="mu"),data=solr,
method="REML")
## 3.5.3
library(lme4)
solr$egg1 <- round(solr$egg * 5)
form <- egg1 ~ offset(off)+lo+la+t+I(lo*la)+I(lo^2)+
I(la^2)+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+I(la^3)+
I(t^3)+I(lo*la*t)+I(lo^2*la)+I(lo*la^2)+I(lo^2*t)+
I(la^2*t)+I(la*t^2)+I(lo*t^2)+ # end log spawn
a +I(a*t)+I(t^2*a) + (1|station)
glmer(form,family=poisson,data=solr)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.