Description Author(s) References See Also Examples
R code from Chapter 2 of the second edition of ‘Generalized Additive Models: An Introduction with R’ is in the examples section below.
Simon Wood <simon@r-project.org>
Maintainer: Simon Wood <simon@r-project.org>
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | library(gamair); library(mgcv)
## 2.1.1
data(stomata)
m1 <- lm(area ~ CO2 + tree,stomata)
m0 <- lm(area ~ CO2,stomata)
anova(m0,m1)
m2 <- lm(area ~ tree,stomata)
anova(m2,m1)
st <- aggregate(data.matrix(stomata),
by=list(tree=stomata$tree),mean)
st$CO2 <- as.factor(st$CO2);st
m3 <- lm(area~CO2,st)
anova(m3)
summary(m3)$sigma^2 - summary(m1)$sigma^2/4
## 2.1.3
library(nlme) # load nlme `library', which contains data
data(Rail) # load data
Rail
m1 <- lm(travel ~ Rail,Rail)
anova(m1)
rt <- aggregate(data.matrix(Rail),by=list(Rail$Rail),mean)
rt
m0 <- lm(travel ~ 1,rt) # fit model to aggregated data
sigb <- (summary(m0)$sigma^2-summary(m1)$sigma^2/3)^0.5
# sigb^2 is variance component for rail
sig <- summary(m1)$sigma # sig^2 is resid. var. component
sigb
sig
summary(m0)
## 2.1.4
library(nlme)
data(Machines)
names(Machines)
attach(Machines) # make data available without `Machines$'
interaction.plot(Machine,Worker,score)
m1 <- lm(score ~ Worker*Machine,Machines)
m0 <- lm(score ~ Worker + Machine,Machines)
anova(m0,m1)
summary(m1)$sigma^2
Mach <- aggregate(data.matrix(Machines),by=
list(Machines$Worker,Machines$Machine),mean)
Mach$Worker <- as.factor(Mach$Worker)
Mach$Machine <- as.factor(Mach$Machine)
m0 <- lm(score ~ Worker + Machine,Mach)
anova(m0)
summary(m0)$sigma^2 - summary(m1)$sigma^2/3
M <- aggregate(data.matrix(Mach),by=list(Mach$Worker),mean)
m00 <- lm(score ~ 1,M)
summary(m00)$sigma^2 - (summary(m0)$sigma^2)/3
## 2.4.4
llm <- function(theta,X,Z,y) {
## untransform parameters...
sigma.b <- exp(theta[1])
sigma <- exp(theta[2])
## extract dimensions...
n <- length(y); pr <- ncol(Z); pf <- ncol(X)
## obtain \hat \beta, \hat b...
X1 <- cbind(X,Z)
ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
b1 <- solve(crossprod(X1)/sigma^2+diag(ipsi),
t(X1)%*%y/sigma^2)
## compute log|Z'Z/sigma^2 + I/sigma.b^2|...
ldet <- sum(log(diag(chol(crossprod(Z)/sigma^2 +
diag(ipsi[-(1:pf)])))))
## compute log profile likelihood...
l <- (-sum((y-X1%*%b1)^2)/sigma^2 - sum(b1^2*ipsi) -
n*log(sigma^2) - pr*log(sigma.b^2) - 2*ldet - n*log(2*pi))/2
attr(l,"b") <- as.numeric(b1) ## return \hat beta and \hat b
-l
}
library(nlme) ## for Rail data
options(contrasts=c("contr.treatment","contr.treatment"))
Z <- model.matrix(~Rail$Rail-1) ## r.e. model matrix
X <- matrix(1,18,1) ## fixed model matrix
## fit the model...
rail.mod <- optim(c(0,0),llm,hessian=TRUE,
X=X,Z=Z,y=Rail$travel)
exp(rail.mod$par) ## variance components
solve(rail.mod$hessian) ## approx cov matrix for theta
attr(llm(rail.mod$par,X,Z,Rail$travel),"b")
## 2.5.1
library(nlme)
lme(travel~1,Rail,list(Rail=~1))
## 2.5.2
Loblolly$age <- Loblolly$age - mean(Loblolly$age)
lmc <- lmeControl(niterEM=500,msMaxIter=100)
m0 <- lme(height ~ age + I(age^2) + I(age^3),Loblolly,
random=list(Seed=~age+I(age^2)+I(age^3)),
correlation=corAR1(form=~age|Seed),control=lmc)
plot(m0)
m1 <- lme(height ~ age+I(age^2)+I(age^3)+I(age^4),Loblolly,
list(Seed=~age+I(age^2)+I(age^3)),
cor=corAR1(form=~age|Seed),control=lmc)
plot(m1)
m2 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
Loblolly,list(Seed=~age+I(age^2)+I(age^3)),
cor=corAR1(form=~age|Seed),control=lmc)
plot(m2)
plot(m2,Seed~resid(.))
qqnorm(m2,~resid(.))
qqnorm(m2,~ranef(.))
m3 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
Loblolly,list(Seed=~age+I(age^2)+I(age^3)),control=lmc)
anova(m3,m2)
m4 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
Loblolly,list(Seed=~age+I(age^2)),
correlation=corAR1(form=~age|Seed),control=lmc)
anova(m4,m2)
m5 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
Loblolly,list(Seed=pdDiag(~age+I(age^2)+I(age^3))),
correlation=corAR1(form=~age|Seed),control=lmc)
anova(m2,m5)
plot(augPred(m2))
## 2.5.3
lme(score~Machine,Machines,list(Worker=~1,Machine=~1))
## 2.5.4
library(lme4)
a1 <- lmer(score~Machine+(1|Worker)+(1|Worker:Machine),
data=Machines)
a1
a2 <- lmer(score~Machine+(1|Worker)+(Machine-1|Worker),
data=Machines)
AIC(a1,a2)
anova(a1,a2)
## 2.5.5
library(mgcv)
b1 <- gam(score~ Machine + s(Worker,bs="re") +
s(Machine,Worker,bs="re"),data=Machines,method="REML")
gam.vcomp(b1)
b2 <- gam(score~ Machine + s(Worker,bs="re") +
s(Worker,bs="re",by=Machine),data=Machines,method="REML")
gam.vcomp(b2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.