ch2: Code for Chapter 2: Linear Mixed Models

Description Author(s) References See Also Examples

Description

R code from Chapter 2 of the second edition of ‘Generalized Additive Models: An Introduction with R’ is in the examples section below.

Author(s)

Simon Wood <simon@r-project.org>

Maintainer: Simon Wood <simon@r-project.org>

References

Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC

See Also

mgcv, ch2.solutions

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
library(gamair); library(mgcv)

## 2.1.1
data(stomata)
m1 <- lm(area ~ CO2 + tree,stomata)
m0 <- lm(area ~ CO2,stomata)
anova(m0,m1)
m2 <- lm(area ~ tree,stomata)
anova(m2,m1)
st <- aggregate(data.matrix(stomata),
                by=list(tree=stomata$tree),mean)
st$CO2 <- as.factor(st$CO2);st
m3 <- lm(area~CO2,st)
anova(m3)
summary(m3)$sigma^2 - summary(m1)$sigma^2/4

## 2.1.3
library(nlme)  # load nlme `library', which contains data
data(Rail)     # load data
Rail
m1 <- lm(travel ~ Rail,Rail)
anova(m1)
rt <- aggregate(data.matrix(Rail),by=list(Rail$Rail),mean)
rt
m0 <- lm(travel ~ 1,rt)   # fit model to aggregated data
sigb <- (summary(m0)$sigma^2-summary(m1)$sigma^2/3)^0.5
# sigb^2 is variance component for rail
sig <- summary(m1)$sigma # sig^2 is resid. var. component
sigb
sig
summary(m0)

## 2.1.4
library(nlme)
data(Machines)
names(Machines)
attach(Machines)  # make data available without `Machines$'
interaction.plot(Machine,Worker,score)
m1 <- lm(score ~ Worker*Machine,Machines)
m0 <- lm(score ~ Worker + Machine,Machines)
anova(m0,m1)
summary(m1)$sigma^2
Mach <- aggregate(data.matrix(Machines),by=
        list(Machines$Worker,Machines$Machine),mean)
Mach$Worker <- as.factor(Mach$Worker)
Mach$Machine <- as.factor(Mach$Machine)
m0 <- lm(score ~ Worker + Machine,Mach)
anova(m0)
summary(m0)$sigma^2 - summary(m1)$sigma^2/3
M <- aggregate(data.matrix(Mach),by=list(Mach$Worker),mean)
m00 <- lm(score ~ 1,M)
summary(m00)$sigma^2 - (summary(m0)$sigma^2)/3

## 2.4.4
llm <- function(theta,X,Z,y) {
  ## untransform parameters...
  sigma.b <- exp(theta[1])
  sigma <- exp(theta[2])
  ## extract dimensions...
  n <- length(y); pr <- ncol(Z); pf <- ncol(X)
  ## obtain \hat \beta, \hat b...
  X1 <- cbind(X,Z)
  ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
  b1 <- solve(crossprod(X1)/sigma^2+diag(ipsi),
              t(X1)%*%y/sigma^2)
  ## compute log|Z'Z/sigma^2 + I/sigma.b^2|...
  ldet <- sum(log(diag(chol(crossprod(Z)/sigma^2 + 
              diag(ipsi[-(1:pf)])))))
  ## compute log profile likelihood...
  l <- (-sum((y-X1%*%b1)^2)/sigma^2 - sum(b1^2*ipsi) - 
  n*log(sigma^2) - pr*log(sigma.b^2) - 2*ldet - n*log(2*pi))/2
  attr(l,"b") <- as.numeric(b1) ## return \hat beta and \hat b
  -l 
}
library(nlme) ## for Rail data
options(contrasts=c("contr.treatment","contr.treatment"))
Z <- model.matrix(~Rail$Rail-1) ## r.e. model matrix
X <- matrix(1,18,1)             ## fixed model matrix
## fit the model...
rail.mod <- optim(c(0,0),llm,hessian=TRUE,
                           X=X,Z=Z,y=Rail$travel)
exp(rail.mod$par) ## variance components
solve(rail.mod$hessian) ## approx cov matrix for theta 
attr(llm(rail.mod$par,X,Z,Rail$travel),"b")

## 2.5.1
library(nlme)
lme(travel~1,Rail,list(Rail=~1))

## 2.5.2

Loblolly$age <- Loblolly$age - mean(Loblolly$age)
lmc <- lmeControl(niterEM=500,msMaxIter=100)
m0 <- lme(height ~ age + I(age^2) + I(age^3),Loblolly,
          random=list(Seed=~age+I(age^2)+I(age^3)),
          correlation=corAR1(form=~age|Seed),control=lmc)
plot(m0)
m1 <- lme(height ~ age+I(age^2)+I(age^3)+I(age^4),Loblolly,
          list(Seed=~age+I(age^2)+I(age^3)),
          cor=corAR1(form=~age|Seed),control=lmc)
plot(m1)
m2 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
          Loblolly,list(Seed=~age+I(age^2)+I(age^3)),
          cor=corAR1(form=~age|Seed),control=lmc)
plot(m2)
plot(m2,Seed~resid(.))
qqnorm(m2,~resid(.))
qqnorm(m2,~ranef(.))

m3 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
          Loblolly,list(Seed=~age+I(age^2)+I(age^3)),control=lmc)
anova(m3,m2)
m4 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
          Loblolly,list(Seed=~age+I(age^2)),
          correlation=corAR1(form=~age|Seed),control=lmc)
anova(m4,m2)
m5 <- lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),
          Loblolly,list(Seed=pdDiag(~age+I(age^2)+I(age^3))),
          correlation=corAR1(form=~age|Seed),control=lmc)
anova(m2,m5)
plot(augPred(m2))

## 2.5.3
lme(score~Machine,Machines,list(Worker=~1,Machine=~1))

## 2.5.4
library(lme4)
a1 <- lmer(score~Machine+(1|Worker)+(1|Worker:Machine),
           data=Machines)
a1
a2 <- lmer(score~Machine+(1|Worker)+(Machine-1|Worker),
           data=Machines)
AIC(a1,a2)
anova(a1,a2)

## 2.5.5
library(mgcv)
b1 <- gam(score~ Machine + s(Worker,bs="re") + 
      s(Machine,Worker,bs="re"),data=Machines,method="REML")
gam.vcomp(b1)
b2 <- gam(score~ Machine + s(Worker,bs="re") + 
      s(Worker,bs="re",by=Machine),data=Machines,method="REML")
gam.vcomp(b2)

gamair documentation built on Aug. 23, 2019, 5:03 p.m.