Description Author(s) References See Also Examples
R code from Chapter 7 of the second edition of ‘Generalized Additive Models: An Introduction with R’ is in the examples section below.
Simon Wood <simon@r-project.org>
Maintainer: Simon Wood <simon@r-project.org>
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | library(gamair); library(mgcv)
## NOTE: Examples are marked 'Not run' to save CRAN check time
## 7.1.1 using smooth constructors
library(mgcv); library(MASS) ## load for mcycle data.
## set up a smoother...
sm <- smoothCon(s(times,k=10),data=mcycle,knots=NULL)[[1]]
## use it to fit a regression spline model...
beta <- coef(lm(mcycle$accel~sm$X-1))
with(mcycle,plot(times,accel)) ## plot data
times <- seq(0,60,length=200) ## create prediction times
## Get matrix mapping beta to spline prediction at 'times'
Xp <- PredictMat(sm,data.frame(times=times))
lines(times,Xp%*%beta) ## add smooth to plot
## Not run:
## 7.2 Brain scan
## 7.2.1 preliminary modelling
require(gamair); require(mgcv); data(brain)
brain <- brain[brain$medFPQ>5e-3,] # exclude 2 outliers
m0 <- gam(medFPQ~s(Y,X,k=100),data=brain)
gam.check(m0)
e <- residuals(m0); fv <- fitted(m0)
lm(log(e^2)~log(fv))
m1<-gam(medFPQ^.25~s(Y,X,k=100),data=brain)
gam.check(m1)
m2<-gam(medFPQ~s(Y,X,k=100),data=brain,family=Gamma(link=log))
mean(fitted(m1)^4);mean(fitted(m2));mean(brain$medFPQ)
m2
vis.gam(m2,plot.type="contour",too.far=0.03,
color="gray",n.grid=60,zlim=c(-1,2))
## 7.2.2 additive?
m3 <- gam(medFPQ~s(Y,k=30)+s(X,k=30),data=brain,
family=Gamma(link=log))
m3
AIC(m2,m3)
## 7.2.3 isotropic or tensor
tm <- gam(medFPQ~te(Y,X,k=10),data=brain,family=Gamma(link=log))
tm1 <- gam(medFPQ ~ s(Y,k=10,bs="cr") + s(X,bs="cr",k=10) +
ti(X,Y,k=10), data=brain, family=Gamma(link=log))
AIC(m2,tm,tm1)
anova(tm1)
## 7.2.4 Detecting symmetry
brain$Xc <- abs(brain$X - 64.5)
brain$right <- as.numeric(brain$X<64.5)
m.sy <- gam(medFPQ~s(Y,Xc,k=100),data=brain,
family=Gamma(link=log))
m.as <- gam(medFPQ~s(Y,Xc,k=100)+s(Y,Xc,k=100,by=right),
data=brain,family=Gamma(link=log))
m.sy
m.as
anova(m.as)
vis.gam(m.sy,plot.type="contour",view=c("Xc","Y"),too.far=.03,
color="gray",n.grid=60,zlim=c(-1,2),main="both sides")
vis.gam(m.as,plot.type="contour",view=c("Xc","Y"),
cond=list(right=0),too.far=.03,color="gray",n.grid=60,
zlim=c(-1,2),main="left side")
vis.gam(m.as,plot.type="contour",view=c("Xc","Y"),
cond=list(right=1),too.far=.03,color="gray",n.grid=60,
zlim=c(-1,2),main="right side")
## 7.2.5 Comparing surfaces
brain1 <- brain
mu <- fitted(m2)
n<-length(mu)
ind <- brain1$X<60 & brain1$Y<20
mu[ind] <- mu[ind]/3
set.seed(1)
brain1$medFPQ <- rgamma(rep(1,n),mu/m2$sig2,scale=m2$sig2)
brain2=rbind(brain,brain1)
brain2$sample1 <- c(rep(1,n),rep(0,n))
brain2$sample0 <- 1 - brain2$sample1
m.same<-gam(medFPQ~s(Y,X,k=100),data=brain2,
family=Gamma(link=log))
m.diff<-gam(medFPQ~s(Y,X,k=100)+s(Y,X,by=sample1,k=100),
data=brain2,family=Gamma(link=log))
AIC(m.same,m.diff)
anova(m.diff)
## 7.2.6 Prediction
predict(m2)[1:5]
pv <- predict(m2,se=TRUE)
pv$fit[1:5]
pv$se[1:5]
predict(m2,type="response")[1:5]
pv <- predict(m2,type="response",se=TRUE)
pv$se[1:5]
pd <- data.frame(X=c(80.1,68.3),Y=c(41.8,41.8))
predict(m2,newdata=pd)
predict(m2,newdata=pd,type="response",se=TRUE)
predict(m3,newdata=pd,type="terms",se=TRUE)
Xp <- predict(m2,newdata=pd,type="lpmatrix")
fv <- Xp%*%coef(m2)
fv
d <- t(c(1,-1))
d%*%fv
d%*%Xp%*%m2$Vp%*%t(Xp)%*%t(d)
## 7.2.7 Variance of non-linear function
ind <- brain$region==1& ! is.na(brain$region)
Xp <- predict(m2,newdata=brain[ind,],type="lpmatrix")
set.seed(8) ## for repeatability
br <- rmvn(n=1000,coef(m2),vcov(m2)) # simulate from posterior
mean.FPQ<-rep(0,1000)
for (i in 1:1000)
{ lp <- Xp%*%br[i,] # replicate linear predictor
mean.FPQ[i] <- mean(exp(lp)) # replicate region 1 mean FPQ
}
mean.FPQ <- colMeans(exp(Xp%*%t(br)))
## 7.3 Retinopathy
require(gamair); require(mgcv); data(wesdr)
k <- 7
b <- gam(ret ~ s(dur,k=k) + s(gly,k=k) + s(bmi,k=k) +
ti(dur,gly,k=k) + ti(dur,bmi,k=k) + ti(gly,bmi,k=k),
select=TRUE, data=wesdr, family=binomial(), method="ML")
b
## 7.4 Air pollution
data(chicago)
ap0 <- gam(death~s(time,bs="cr",k=200)+pm10median+so2median+
o3median+tmpd,data=chicago,family=poisson)
gam.check(ap0)
par(mfrow=c(2,1))
plot(ap0,n=1000) # n increased to make plot smooth
plot(ap0,residuals=TRUE,n=1000)
chicago$death[3111:3125]
ap1<-gam(death~s(time,bs="cr",k=200)+s(pm10median,bs="cr")+
s(so2median,bs="cr")+s(o3median,bs="cr")+s(tmpd,bs="cr"),
data=chicago,family=poisson)
## 7.4.1 single index
lagard <- function(x,n.lag=6) {
n <- length(x); X <- matrix(NA,n,n.lag)
for (i in 1:n.lag) X[i:n,i] <- x[i:n-i+1]
X
}
dat <- list(lag=matrix(0:5,nrow(chicago),6,byrow=TRUE),
death=chicago$death,time=chicago$time)
dat$pm10 <- lagard(chicago$pm10median)
dat$tmp <- lagard(chicago$tmpd)
dat$o3 <- lagard(chicago$o3median)
si <- function(theta,dat,opt=TRUE) {
## Return ML if opt==TRUE or fitted gam otherwise.
alpha <- c(1,theta) ## alpha defined via unconstrained theta
kk <- sqrt(sum(alpha^2)); alpha <- alpha/kk ## ||alpha||=1
o3 <- dat$o3%*%alpha; tmp <- dat$tmp%*%alpha
pm10 <- dat$pm10%*%alpha ## re-weight lagged covariates
b<- bam(dat$death~s(dat$time,k=200,bs="cr")+s(pm10,bs="cr")+
te(o3,tmp,k=8),family=poisson) ## fit model
cat(".") ## give user something to watch
if (opt) return(b$gcv.ubre) else {
b$alpha <- alpha ## add alpha to model object
b$J <- outer(alpha,-theta/kk^2) ## get dalpha_i/dtheta_j
for (j in 1:length(theta)) b$J[j+1,j] <- b$J[j+1,j] + 1/kk
return(b)
}
} ## si
## WARNING: the next line takes around half an hour to run
f1 <- optim(rep(1,5),si,method="BFGS",hessian=TRUE,dat=dat)
apsi <- si(f1$par,dat,opt=FALSE)
apsi$alpha
## 7.4.2 distributed lag...
apl <- bam(death~s(time,bs="cr",k=200)+te(pm10,lag,k=c(10,5))+
te(o3,tmp,lag,k=c(8,8,5)),family=poisson,data=dat)
## 7.5 Egg survey - less than a minute
## 7.5.1 Model development
data(mack)
mack$log.net.area <- log(mack$net.area)
gmtw <- gam(egg.count ~ s(lon,lat,k=100) + s(I(b.depth^.5))+
s(c.dist) + s(salinity) + s(temp.surf) + s(temp.20m)+
offset(log.net.area),data=mack,family=tw,method="REML",
select=TRUE)
gm2 <- gam(egg.count ~ s(lon,lat,k=100) + s(I(b.depth^.5)) +
s(c.dist) + s(temp.20m) + offset(log.net.area),
data=mack,family=tw,method="REML")
gm2
## 7.5.2 model predictions
par(mfrow=c(1,3))
data(mackp); data(coast)
mackp$log.net.area <- rep(0,nrow(mackp))
lon <- seq(-15,-1,1/4); lat <- seq(44,58,1/4)
zz<-array(NA,57*57); zz[mackp$area.index]<-predict(gm2,mackp)
image(lon,lat,matrix(zz,57,57),col=gray(0:32/32),
cex.lab=1.5,cex.axis=1.4)
contour(lon,lat,matrix(zz,57,57),add=TRUE)
lines(coast$lon,coast$lat,col=1)
set.seed(4) ## make reproducable
br1 <- rmvn(n=1000,coef(gm2),vcov(gm2))
Xp <- predict(gm2,newdata=mackp,type="lpmatrix")
mean.eggs1 <- colMeans(exp(Xp%*%t(br1)))
hist(mean.eggs1)
## 7.5.3 alternative
gmgr <- gam(egg.count ~s(lon,lat,k=100)+s(lon,lat,by=temp.20m)
+s(lon,lat,by=I(b.depth^.5)) +offset(log.net.area),
data=mack,family=tw,method="REML")
## 7.6 Larks - about a minute
library(gamair); data(bird)
bird$n <- bird$y/1000;bird$e <- bird$x/1000
m1 <- gam(crestlark~s(e,n,k=100),data=bird,family=binomial,
method="REML")
m1
m2 <- gam(crestlark ~ s(e,n,bs="ds",m=c(1,.5),k=100),data=bird,family=binomial,
method="REML")
REML <- r <- 1:10*10
for (i in 1:length(r)) {
mt <- gam(crestlark ~ s(e,n,bs="gp",m=c(3,r[i]),k=100),
data=bird,family=binomial,method="REML")
REML[i] <- mt$gcv.ubre
if (i==1||REML[i]==REML0) { m3 <- mt; REML0 <- REML[i]}
}
AIC(m1,m2,m3)
bird$tet.n <- bird$N <- rep(1,nrow(bird))
bird$N[is.na(as.vector(bird$crestlark))] <- NA
ba <- aggregate(data.matrix(bird), by=list(bird$QUADRICULA),
FUN=sum, na.rm=TRUE)
ba$e <- ba$e/ba$tet.n; ba$n <- ba$n/ba$tet.n
m10 <- gam(cbind(crestlark,N-crestlark) ~ s(e,n,k=100),
data=ba, family=binomial, method="REML")
library(geoR)
coords<-matrix(0,nrow(ba),2);coords[,1]<-ba$e;coords[,2]<-ba$n
gb<-list(data=residuals(m10,type="d"),coords=coords)
plot(variog(gb,max.dist=100))
plot(fitted(m10),residuals(m10))
## 7.7.1 Sole egg GAMM
## Chapter 3 preliminaries...
data(sole)
sole$off <- log(sole$a.1-sole$a.0)# model offset term
sole$a<-(sole$a.1+sole$a.0)/2 # mean stage age
solr<-sole # make copy for rescaling
solr$t<-solr$t-mean(sole$t)
solr$t<-solr$t/var(sole$t)^0.5
solr$la<-solr$la-mean(sole$la)
solr$lo<-solr$lo-mean(sole$lo)
## GAMM fit...
solr$station <- factor(with(solr,paste(-la,-lo,-t,sep="")))
som <- gamm(eggs~te(lo,la,t,bs=c("tp","tp"),k=c(25,5),d=c(2,1))
+s(t,k=5,by=a)+offset(off), family=quasipoisson,
data=solr,random=list(station=~1))
som$gam
som1 <- bam(eggs~te(lo,la,t,bs=c("tp","tp"),k=c(25,5),d=c(2,1))
+ s(t,k=5,by=a)+offset(off)+s(station,bs="re"),
family=quasipoisson,data=solr)
gam.vcomp(som1)
som$lme
## boundary and knots for soap...
bnd <- list(list(lo=c(-6.74,-5.72,-5.7 ,-5.52,-5.37,-5.21,-5.09,-5.02,
-4.92,-4.76,-4.64,-4.56,-4.53,-4.3,-4.16,-3.8 ,-3.8,-5.04,-6.76,
-6.74),
la=c(50.01,50.02,50.13,50.21,50.24,50.32,50.41,50.54,50.59,50.64,
50.74,50.86,51.01,51 ,51.2,51.22,51.61,51.7,51.7,50.01)))
knt <- list(lo=c(-4.643,-5.172,-5.638,-6.159,-6.665,-6.158,-5.656,-5.149,
-4.652,-4.154,-3.901,-4.146,-4.381,-4.9,-5.149,-5.37,-5.866,-6.36,-6.635,
-6.12,-5.626,-5.117,-4.622,-4.695,-4.875,-5.102,-5.609,-5.652,-5.141,
-5.354,-5.843,-6.35,-6.628,-6.127,-5.63,-5.154,-5.356,-5.652,-5.853,
-6.123),
la=c(51.626,51.61,51.639,51.638,51.376,51.377,51.373,51.374,51.374,
51.376,51.379,51.226,51.129,51.194,51.083,51.147,51.129,51.151,50.901,
50.891,50.959,50.958,50.942,50.728,50.676,50.818,50.825,50.684,50.693,
50.568,50.564,50.626,50.397,50.451,50.443,50.457,50.325,50.193,50.322,
50.177))
sole$station <- solr$station ## station to sole data
som2 <- bam(eggs ~ te(lo,la,t,bs=c("sw","cr"),k=c(40,5),
d=c(2,1),xt=list(list(bnd=bnd),NULL)) +
s(t,k=5,by=a) + offset(off) + s(station,bs="re"),
knots=knt, family=quasipoisson, data=sole)
## 7.7.2 Cairo temperature
data(cairo)
ctamm <- gamm(temp~s(day.of.year,bs="cc",k=20)+s(time,bs="cr"),
data=cairo,correlation=corAR1(form=~1|year))
summary(ctamm$gam)
intervals(ctamm$lme,which="var-cov")
ctamm$gam$sig2/ctamm$gam$sp
plot(ctamm$gam,scale=0,pages=1)
REML <- rho <- 0.6+0:20/100
for (i in 1:length(rho)) {
ctbam <- bam(temp~s(day.of.year,bs="cc",k=20)+s(time,bs="cr"),
data=cairo,rho=rho[i])
REML[i] <- ctbam$gcv.ubre
}
rho[REML==min(REML)]
## 7.7.3 Fully Bayesian
## Not currently included (requires editing of JAGS file)
## 7.7.4 Random wiggly curves
data(sitka)
sitka$id.num <- as.factor(sitka$id.num)
b <- gamm(log.size~s(days) + ozone + ozone:days +
s(days,id.num,bs="fs",k=5),data=sitka)
plot(b$gam,pages=1)
## 7.8 survival
require(survival)
data(pbc) ## loads pbcseq also
pbc$status1 <- as.numeric(pbc$status==2)
pbc$stage <- factor(pbc$stage)
b0 <- gam(time ~ trt+sex+stage+s(sqrt(protime))+s(platelet)+
s(age)+s(bili)+s(albumin)+s(sqrt(ast))+s(alk.phos),
weights=status1,family=cox.ph,data=pbc)
b <- gam(time ~ trt+sex+s(sqrt(protime))+s(platelet)+
s(age)+s(bili)+s(albumin),
weights=status1,family=cox.ph,data=pbc)
anova(b)
par(mfrow=c(2,3))
plot(b); plot(b$linear.predictors,residuals(b))
par(mfrow=c(1,1))
## create prediction data frame...
np <- 300
newd <- data.frame(matrix(0,np,0))
for (n in names(pbc)) newd[[n]] <- rep(pbc[[n]][25],np)
newd$time <- seq(0,4500,length=np)
## predict and plot the survival function...
fv <- predict(b,newdata=newd,type="response",se=TRUE)
plot(newd$time,fv$fit,type="l",ylim=c(0.,1),xlab="time",
ylab="survival",lwd=2)
## add crude one s.e. intervals...
lines(newd$time,fv$fit+fv$se.fit,col="grey")
lines(newd$time,fv$fit-fv$se.fit,col="grey")
## and intervals based on cumulative hazard s.e...
se <- fv$se.fit/fv$fit
lines(newd$time,exp(log(fv$fit)+se))
lines(newd$time,exp(log(fv$fit)-se))
## 7.8.1 time dependent
## copy functions from ?cox.pht in mgcv...
app <- function(x,t,to) {
## wrapper to approx for calling from apply...
y <- if (sum(!is.na(x))<1) rep(NA,length(to)) else
approx(t,x,to,method="constant",rule=2)$y
if (is.factor(x)) factor(levels(x)[y],levels=levels(x)) else y
} ## app
tdpois <- function(dat,event="z",et="futime",t="day",
status="status1",id="id") {
## dat is data frame. id is patient id; et is event time; t is
## observation time; status is 1 for death 0 otherwise;
## event is name for Poisson response.
if (event %in% names(dat)) warning("event name in use")
require(utils) ## for progress bar
te <- sort(unique(dat[[et]][dat[[status]]==1])) ## event times
sid <- unique(dat[[id]])
prg <- txtProgressBar(min = 0, max = length(sid), initial = 0,
char = "=",width = NA, title="Progress", style = 3)
## create dataframe for poisson model data
dat[[event]] <- 0; start <- 1
dap <- dat[rep(1:length(sid),length(te)),]
for (i in 1:length(sid)) { ## work through patients
di <- dat[dat[[id]]==sid[i],] ## ith patient's data
tr <- te[te <= di[[et]][1]] ## times required for this patient
## Now do the interpolation of covariates to event times...
um <- data.frame(lapply(X=di,FUN=app,t=di[[t]],to=tr))
## Mark the actual event...
if (um[[et]][1]==max(tr)&&um[[status]]==1) um[[event]][nrow(um)] <- 1
um[[et]] <- tr ## reset time to relevant event times
dap[start:(start-1+nrow(um)),] <- um ## copy to dap
start <- start + nrow(um)
setTxtProgressBar(prg, i)
}
close(prg)
dap[1:(start-1),]
} ## tdpois
## model fitting...
data(pbc)
pbcseq$status1 <- as.numeric(pbcseq$status==2) ## deaths
pb <- tdpois(pbcseq) ## conversion
pb$tf <- factor(pb$futime) ## add factor for event time
b <- bam(z ~ tf - 1 + trt + s(sqrt(protime)) + s(platelet) +
s(age) + s(bili) + s(albumin) + s(sqrt(ast)),
family=poisson,data=pb,discrete=TRUE,nthreads=2)
chaz <- tapply(fitted(b),pb$id,sum) ## cum. hazard by subject
d <- tapply(pb$z,pb$id,sum) ## censoring indicator
mrsd <- d - chaz ## Martingale residuals
drsd <- sign(mrsd)*sqrt(-2*(mrsd + d*log(chaz))) ## deviance
te <- sort(unique(pb$futime)) ## event times
di <- pbcseq[pbcseq$id==25,] ## data for subject 25
## interpolate to te using app from ?cox.pht...
pd <- data.frame(lapply(X=di,FUN=app,t=di$day,to=te))
pd$tf <- factor(te)
X <- predict(b,newdata=pd,type="lpmatrix")
eta <- drop(X%*%coef(b)); H <- cumsum(exp(eta))
J <- apply(exp(eta)*X,2,cumsum)
se <- diag(J%*%vcov(b)%*%t(J))^.5
par(mfrow=c(1,2))
plot(stepfun(te,c(1,exp(-H))),do.points=FALSE,ylim=c(0.7,1),
ylab="S(t)",xlab="t (days)",main="",lwd=2)
lines(stepfun(te,c(1,exp(-H+se))),do.points=FALSE)
lines(stepfun(te,c(1,exp(-H-se))),do.points=FALSE)
rug(pbcseq$day[pbcseq$id==25]) ## measurement times
er <- pbcseq[pbcseq$id==25,]
plot(er$day,er$ast);lines(te,pd$ast)
## 7.9 Location scale
library(MASS);library(mgcv)
b <- gam(list(accel~s(times,bs="ad"),~s(times,bs="ad")),
family=gaulss,data=mcycle)
## 7.9.1 Extreme rainfall
library(mgcv);library(gamair);data(swer)
b0 <- gam(list(exra ~ s(nao)+ s(elevation)+ climate.region+
te(N,E,year,d=c(2,1),k=c(20,5)),
~ s(year)+ s(nao)+ s(elevation)+ climate.region+ s(N,E),
~ s(elevation)+ climate.region),family=gevlss,data=swer)
b <- gam(list(exra~ s(nao)+s(elevation)+climate.region+s(N,E),
~ s(year)+ s(elevation)+ climate.region+ s(N,E),
~ climate.region),family=gevlss,data=swer)
plot(b,scale=0,scheme=c(1,1,3,1,1,3),contour.col="white",pages=1)
mu <- fitted(b)[,1];rho <- fitted(b)[,2]; xi <- fitted(b)[,3]
fv <- mu + exp(rho)*(gamma(1-xi)-1)/xi
Fi.gev <- function(z,mu,sigma,xi) { ## GEV inverse cdf.
xi[abs(xi)<1e-8] <- 1e-8 ## approximate xi=0, by small xi
x <- mu + ((-log(z))^-xi-1)*sigma/xi
}
mb <- coef(b);Vb <- vcov(b) ## posterior mean and cov
b1 <- b ## copy fitted model object to modify
n.rep <- 1000; br <- rmvn(n.rep,mb,Vb) ## posterior sim
n <- length(fitted(b))
sim.dat <- cbind(data.frame(rep(0,n*n.rep)),swer$code)
for (i in 1:n.rep) {
b1$coefficients <- br[i,] ## copy sim coefs to gam object
X <- predict(b1,type="response");ii <- 1:n + (i-1)*n
sim.dat[ii,1] <- Fi.gev(runif(n),X[,1],exp(X[,2]),X[,3])
}
stm <- tapply(sim.dat[,1],sim.dat[,2],mean)
st98 <- tapply(sim.dat[,1],sim.dat[,2],quantile,probs=0.98)
## 7.10 Multivariate
library(mgcv); library(gamair); data(mpg)
b <- gam(list(city.mpg ~ fuel +style +drive +s(weight) +s(hp)
+ s(make,bs="re"),
hw.mpg ~ fuel +style +drive +s(weight) +s(hp)
+ s(make,bs="re")),
family = mvn(d=2) , data = mpg)
b1 <- gam(list(city.mpg ~ fuel +style +drive +s(hp) +s(weight)
+ s(make,bs="re"),
hw.mpg ~ fuel +style +drive +s(make,bs="re"),
1+2 ~ s(weight) +s(hp) -1),
family = mvn(d=2) , data = mpg)
## 7.11 FDA
## 7.11.1 scalar-on-function
data(gas)
b <- gam(octane~s(nm,by=NIR,k=50),data=gas)
par(mfrow=c(1,2))
plot(b,scheme=1,col=1)
plot(fitted(b),gas$octane)
## Prostate...
data(prostate)
b <- gam(type ~ s(MZ,by=intensity,k=100),family=ocat(R=3),
data=prostate,method="ML")
par(mfrow=c(1,3))
plot(b,rug=FALSE,scheme=1,xlab="Daltons",ylab="f(D)",
cex.lab=1.6,cex.axis=1.4)
pb <- predict(b,type="response") ## matrix of class probs
plot(factor(prostate$type),pb[,3])
qq.gam(b,rep=100,lev=.95)
prostate$type1 <- prostate$type - 1 ## recode for multinom
b1 <- gam(list(type1 ~ s(MZ,by=intensity,k=100),
~ s(MZ,by=intensity,k=100)),
family=multinom(K=2),data=prostate)
plot(b1,pages=1,scheme=1,rug=FALSE)
## 7.11.2 Canadian weather
require(gamair);require(lattice);data(canWeather)
xyplot(T~time|region,data=CanWeather,type="l",groups=place)
aic <- reml <- rho <- seq(0.9,0.99,by=.01)
for (i in 1:length(rho)) {
b <- bam(T ~ region + s(time,k=20,bs="cr",by=region) +
s(time,k=40,bs="cr",by=latitude),
data=CanWeather,AR.start=time==1,rho=rho[i])
aic[i] <- AIC(b); reml[i] <- b$gcv.ubre
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.