ch4: Code for Chapter 4: Introducing GAMs

Description Author(s) References See Also Examples

Description

R code from Chapter 4 of the second edition of ‘Generalized Additive Models: An Introduction with R’ is in the examples section below.

Author(s)

Simon Wood <simon@r-project.org>

Maintainer: Simon Wood <simon@r-project.org>

References

Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, CRC

See Also

mgcv, ch4.solutions

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
library(gamair); library(mgcv)

## 4.2.1
data(engine); attach(engine)

plot(size,wear,xlab="Engine capacity",ylab="Wear index")

tf <- function(x,xj,j) {
## generate jth tent function from set defined by knots xj
  dj <- xj*0;dj[j] <- 1
  approx(xj,dj,x)$y
}

tf.X <- function(x,xj) {
## tent function basis matrix given data x
## and knot sequence xj
  nk <- length(xj); n <- length(x)
  X <- matrix(NA,n,nk)
  for (j in 1:nk) X[,j] <- tf(x,xj,j)
  X
}

sj <- seq(min(size),max(size),length=6) ## generate knots
X <- tf.X(size,sj)                      ## get model matrix
b <- lm(wear~X-1)                       ## fit model
s <- seq(min(size),max(size),length=200)## prediction data
Xp <- tf.X(s,sj)                        ## prediction matrix
plot(size,wear)                         ## plot data 
lines(s,Xp%*%coef(b))                   ## overlay estimated f

## 4.2.2
prs.fit <- function(y,x,xj,sp) {
  X <- tf.X(x,xj)       ## model matrix
  D <- diff(diag(length(xj)),differences=2) ## sqrt penalty
  X <- rbind(X,sqrt(sp)*D) ## augmented model matrix
  y <- c(y,rep(0,nrow(D))) ## augmented data
  lm(y~X-1)   ## penalized least squares fit
}

sj <- seq(min(size),max(size),length=20) ## knots
b <- prs.fit(wear,size,sj,2) ## penalized fit
plot(size,wear)   ## plot data
Xp <- tf.X(s,sj)  ## prediction matrix
lines(s,Xp%*%coef(b)) ## plot the smooth 

## 4.2.3
rho = seq(-9,11,length=90)
n <- length(wear)
V <- rep(NA,90) 
for (i in 1:90) { ## loop through smoothing params
  b <- prs.fit(wear,size,sj,exp(rho[i])) ## fit model
  trF <- sum(influence(b)$hat[1:n])      ## extract EDF
  rss <- sum((wear-fitted(b)[1:n])^2)    ## residual SS
  V[i] <- n*rss/(n-trF)^2                ## GCV score
}

plot(rho,V,type="l",xlab=expression(log(lambda)),
                    main="GCV score")
sp <- exp(rho[V==min(V)])     ## extract optimal sp
b <- prs.fit(wear,size,sj,sp) ## re-fit
plot(size,wear,main="GCV optimal fit")
lines(s,Xp%*%coef(b))

## 4.2.3 mixed model connection

## copy of llm from 2.2.4...
llm <- function(theta,X,Z,y) {
  ## untransform parameters...
  sigma.b <- exp(theta[1])
  sigma <- exp(theta[2])
  ## extract dimensions...
  n <- length(y); pr <- ncol(Z); pf <- ncol(X)
  ## obtain \hat \beta, \hat b...
  X1 <- cbind(X,Z)
  ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
  b1 <- solve(crossprod(X1)/sigma^2+diag(ipsi),
              t(X1)%*%y/sigma^2)
  ## compute log|Z'Z/sigma^2 + I/sigma.b^2|...
  ldet <- sum(log(diag(chol(crossprod(Z)/sigma^2 + 
              diag(ipsi[-(1:pf)])))))
  ## compute log profile likelihood...
  l <- (-sum((y-X1%*%b1)^2)/sigma^2 - sum(b1^2*ipsi) - 
  n*log(sigma^2) - pr*log(sigma.b^2) - 2*ldet - n*log(2*pi))/2
  attr(l,"b") <- as.numeric(b1) ## return \hat beta and \hat b
  -l 
}

X0 <- tf.X(size,sj)            ## X in original parameterization
D <- rbind(0,0,diff(diag(20),difference=2)) 
diag(D) <- 1                   ## augmented D
X <- t(backsolve(t(D),t(X0)))  ## re-parameterized X
Z <- X[,-c(1,2)]; X <- X[,1:2] ## mixed model matrices
## estimate smoothing and variance parameters...
m <- optim(c(0,0),llm,method="BFGS",X=X,Z=Z,y=wear)
b <- attr(llm(m$par,X,Z,wear),"b") ## extract coefficients
## plot results...
plot(size,wear)
Xp1 <- t(backsolve(t(D),t(Xp))) ## re-parameterized pred. mat.
lines(s,Xp1%*%as.numeric(b),col="grey",lwd=2)

library(nlme)
g <- factor(rep(1,nrow(X)))        ## dummy factor
m <- lme(wear~X-1,random=list(g=pdIdent(~Z-1)))
lines(s,Xp1%*%as.numeric(coef(m))) ## and to plot


## 4.3.1 Additive

tf.XD <- function(x,xk,cmx=NULL,m=2) {
## get X and D subject to constraint
  nk <- length(xk)
  X <- tf.X(x,xk)[,-nk]                   ## basis matrix
  D <- diff(diag(nk),differences=m)[,-nk] ## root penalty
  if (is.null(cmx)) cmx <- colMeans(X)
  X <- sweep(X,2,cmx)        ## subtract cmx from columns
  list(X=X,D=D,cmx=cmx)
} ## tf.XD

am.fit <- function(y,x,v,sp,k=10) {
  ## setup bases and penalties...
  xk <- seq(min(x),max(x),length=k)
  xdx <- tf.XD(x,xk)
  vk <- seq(min(v),max(v),length=k)
  xdv <- tf.XD(v,vk)
  ## create augmented model matrix and response...
  nD <- nrow(xdx$D)*2
  sp <- sqrt(sp)
  X <- cbind(c(rep(1,nrow(xdx$X)),rep(0,nD)),
             rbind(xdx$X,sp[1]*xdx$D,xdv$D*0),
             rbind(xdv$X,xdx$D*0,sp[2]*xdv$D))  
  y1 <- c(y,rep(0,nD))
  ## fit model..
  b <- lm(y1~X-1)
  ## compute some useful quantities...
  n <- length(y)
  trA <- sum(influence(b)$hat[1:n]) ## EDF
  rsd <- y-fitted(b)[1:n] ## residuals
  rss <- sum(rsd^2)       ## residual SS
  sig.hat <- rss/(n-trA)       ## residual variance
  gcv <- sig.hat*n/(n-trA)     ## GCV score
  Vb <- vcov(b)*sig.hat/summary(b)$sigma^2 ## coeff cov matrix
  ## return fitted model...
  list(b=coef(b),Vb=Vb,edf=trA,gcv=gcv,fitted=fitted(b)[1:n],
       rsd=rsd,xk=list(xk,vk),cmx=list(xdx$cmx,xdv$cmx))
} ## am.fit

am.gcv <- function(lsp,y,x,v,k) {
## function suitable for GCV optimization by optim 
  am.fit(y,x,v,exp(lsp),k)$gcv
}

## find GCV optimal smoothing parameters... 
fit <- optim(c(0,0), am.gcv, y=trees$Volume, x=trees$Girth,
             v=trees$Height,k=10)
sp <- exp(fit$par) ## best fit smoothing parameters
## Get fit at GCV optimal smoothing parameters...
fit <- am.fit(trees$Volume,trees$Girth,trees$Height,sp,k=10)

am.plot <- function(fit,xlab,ylab) {
## produces effect plots for simple 2 term 
## additive model 
  start <- 2 ## where smooth coeffs start in beta
  for (i in 1:2) {
    ## sequence of values at which to predict...
    x <- seq(min(fit$xk[[i]]),max(fit$xk[[i]]),length=200)
    ## get prediction matrix for this smooth...
    Xp <- tf.XD(x,fit$xk[[i]],fit$cmx[[i]])$X 
    ## extract coefficients and cov matrix for this smooth
    stop <- start + ncol(Xp)-1; ind <- start:stop
    b <- fit$b[ind];Vb <- fit$Vb[ind,ind]
    ## values for smooth at x...
    fv <- Xp%*%b
    ## standard errors of smooth at x....
    se <- rowSums((Xp%*%Vb)*Xp)^.5
    ## 2 s.e. limits for smooth...
    ul <- fv + 2*se;ll <- fv - 2 * se
    ## plot smooth and limits...
    plot(x,fv,type="l",ylim=range(c(ul,ll)),xlab=xlab[i],
         ylab=ylab[i])
    lines(x,ul,lty=2);lines(x,ll,lty=2)
    start <- stop + 1
  }
} ## am.plot

par(mfrow=c(1,3))
plot(fit$fitted,trees$Vol,xlab="fitted volume ",
     ylab="observed volume")
am.plot(fit,xlab=c("Girth","Height"),
        ylab=c("s(Girth)","s(Height)"))

## 4.4 Generalized additive

gam.fit <- function(y,x,v,sp,k=10) {
## gamma error log link 2 term gam fit...
  eta <- log(y) ## get initial eta
  not.converged <- TRUE
  old.gcv <- -100 ## don't converge immediately
  while (not.converged) {
    mu <- exp(eta)  ## current mu estimate  
    z <- (y - mu)/mu + eta ## pseudodata
    fit <- am.fit(z,x,v,sp,k) ## penalized least squares
    if (abs(fit$gcv-old.gcv)<1e-5*fit$gcv) { 
      not.converged <- FALSE
    }
    old.gcv <- fit$gcv 
    eta <- fit$fitted ## updated eta
  }
  fit$fitted <- exp(fit$fitted) ## mu
  fit
} ## gam.fit

gam.gcv <- function(lsp,y,x,v,k=10) {
  gam.fit(y,x,v,exp(lsp),k=k)$gcv
}

fit <- optim(c(0,0),gam.gcv,y=trees$Volume,x=trees$Girth,
             v=trees$Height,k=10)
sp <- exp(fit$par)
fit <- gam.fit(trees$Volume,trees$Girth,trees$Height,sp)
par(mfrow=c(1,3))
plot(fit$fitted,trees$Vol,xlab="fitted volume ",
     ylab="observed volume")
am.plot(fit,xlab=c("Girth","Height"),
        ylab=c("s(Girth)","s(Height)"))

## 4.6 mgcv

library(mgcv)   ## load the package
library(gamair) ## load the data package
data(trees)
ct1 <- gam(Volume~s(Height)+s(Girth),
           family=Gamma(link=log),data=trees)
ct1
plot(ct1,residuals=TRUE)

## 4.6.1
ct2 <- gam(Volume~s(Height,bs="cr")+s(Girth,bs="cr"),
           family=Gamma(link=log),data=trees)
ct2
ct3 <- gam(Volume ~ s(Height) + s(Girth,bs="cr",k=20),
           family=Gamma(link=log),data=trees)
ct3

ct4 <- gam(Volume ~ s(Height) + s(Girth),
           family=Gamma(link=log),data=trees,gamma=1.4)
ct4
plot(ct4,residuals=TRUE)

## 4.6.2

ct5 <- gam(Volume ~ s(Height,Girth,k=25),
           family=Gamma(link=log),data=trees)
ct5
plot(ct5,too.far=0.15)
ct6 <- gam(Volume ~ te(Height,Girth,k=5),
           family=Gamma(link=log),data=trees)
ct6
plot(ct6,too.far=0.15)

## 4.6.3

gam(Volume~Height+s(Girth),family=Gamma(link=log),data=trees)

trees$Hclass <- factor(floor(trees$Height/10)-5,
                labels=c("small","medium","large"))

ct7 <- gam(Volume ~ Hclass+s(Girth),
           family=Gamma(link=log),data=trees)
par(mfrow=c(1,2))
plot(ct7,all.terms=TRUE)
anova(ct7)
AIC(ct7)
summary(ct7)

gamair documentation built on Aug. 23, 2019, 5:03 p.m.