Nothing
## this is a cycle Penalized Beta regression splines smoother
## Paul Eilers, Mikis Stasinopoulos and Bob Rigby
## last modified Saturday, August 28, 2009
#----------------------------------------------------------------------------------------
cy<-function(x, df = NULL, lambda = NULL, control=cy.control(...), ...)
{
## this function is based on Paul Eilers' penalised beta regression splines function
## lambda : is the smoothing parameter
## df : are the effective df's
## if both lambda=NULL and df=NULL then lambda is estimated using the different method
## methods are "ML", "ML-1", "EM", "GAIC" and "GCV"
## if df is set to number but lambda is NULL then df are used for smoothing
## if lambda is set to a number (whether df=NULL or not) lambda is used for smoothing
# ---------------------------------------------------
## local function
## creates the basis for p-splines
## Paul Eilers' function
#----------------------------------------------------
bbase <- function(x, xl, xr, ndx, deg, ts)
{
tpower <- function(x, t, p)
# Truncated p-th power function
(x - t) ^ p * (x > t)
# DS xl= min, xr=max, ndx= number of points within
# Construct B-spline basis
# if ts=TRUE use different base
if (ts) # if it is time series or factor
{
knots <- sort(c(rep(c(xl-0.5,xr+0.5), (deg+1)), unique(as.numeric(x))))
B <- splineDesign(knots, x = x, outer.ok = TRUE, ord=deg+1)
return(B)
}
else
{
dx <- (xr - xl) / ndx # DS increment
knots <- seq(xl - deg * dx, xr + deg * dx, by = dx)
## B1 <- splineDesign(knots, x=x, outer.ok = TRUE) # note this will be equivalent Wednesday, September 2, 2009 at 08:37
P <- outer(x, knots, tpower, deg)# calculate the power in the knots
n <- dim(P)[2]
D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ^ deg) #
B <- (-1) ^ (deg + 1) * P %*% t(D)
return(B)
}
}
#---------------------------------------------------
## Paul Eilers' function
cbase <- function(x, xl, xr, ndx, deg, ts)
{
# Construct circular B-spline basis
# Domain: xl to xr, number of segmants on domain: ndx, degree: deg
# Wrap around to cyclic basis
B0 = bbase(x, xl = xl, xr = xr, ndx = ndx, deg = deg, ts=ts)
n = ncol(B0) - deg # 13-3=10
cc = (1:deg) + n # 11 12 13
B = B0[, 1:n] # B is 100 X 10
B[, 1:deg] = B[, 1:deg] + B0[, cc] # B[,c(1,2,3)]= B[,c(1,2,3)]+ B[,c(13,12,11)] Friday, BR ans MS October 9, 2009
B
}
#---------------------------------------------------
## Paul Eilers' function
cdiff = function(n) {
# Compute cyclic difference matrix
D2 <- matrix(0, n, n + 2)
p <- c(-1, 2* cos(2 * pi / n), -1)
for (k in 1:n) D2[k, (0:2) + k] = p
D <- D2[, 2:(n + 1)]
D[, 1] <- D[, 1] + D2[, n + 2]
D[, n] <- D[, n] + D2[, 1]
D
}
#---------------------------------------------------
# the main function starts here
scall <- deparse(sys.call())
lx <- length(x)
if (is(x,"factor")||control$ts==TRUE)
{
xval <- as.numeric(unique(x))
xl <- min(xval)
xr <- max(xval)
X <- cbase(as.numeric(x), xl, xr, length(xval), control$degree, ts=TRUE) # create the basis
}
else
{
control$inter <- if (lx<100) 10 else control$inter # this is to prevent singularities when length(x) is small
xl <- min(x)
xr <- max(x)
# xmax <- xr #+ 0.01 * (xr - xl) # BR and MS Friday, October 9, 2009
# xmin <- xl #- 0.01 * (xr - xl)
X <- cbase(x, xl, xr, control$inter, control$degree, ts=FALSE) # create the basis
}
# Cyclic penalty
nb <- ncol(X)
D <- cdiff(nb)
# D <- diff(D) # not know yt if I should include that or not DS Saturday, August 29, 2009 at 15:40
if(!is.null(df)) # degrees of freedom
{
if (df>(dim(X)[2]-2))
{df <- 3;
warning("The df's exceed the number of columns of the design matrix", "\n", " they are set to 3") }
df <- if (df < 1) 1 else df+1
if (df < 1) warning("the df are set to 1")
}
## here we get the gamlss environment and a random name to save
## the starting values for lambda within gamlss()
## get gamlss environment
#--------
rexpr<-regexpr("gamlss",sys.calls())
for (i in 1:length(rexpr)){
position <- i
if (rexpr[i]==1) break}
gamlss.environment <- sys.frame(position)
#--------
## get a random name to use it in the gamlss() environment
#--------
sl <-sample(letters, 4)
fourLetters <- paste(paste(paste(sl[1], sl[2], sep=""), sl[3], sep=""),sl[4], sep="")
startLambdaName <- paste("start.Lambda",fourLetters, sep=".")
## put the starting values in the gamlss()environment
#--------
assign(startLambdaName, control$start, envir=gamlss.environment)
#--------
xvar <- rep(0,length(x)) #
attr(xvar, "control") <- control
attr(xvar, "D") <- D
attr(xvar, "X") <- X
attr(xvar, "df") <- df
attr(xvar, "call") <- substitute(gamlss.cy(data[[scall]], z, w))
attr(xvar, "lambda") <- lambda
attr(xvar, "gamlss.env") <- gamlss.environment
attr(xvar, "NameForLambda") <- startLambdaName
attr(xvar, "class") <- "smooth"
xvar
}
#----------------------------------------------------------------------------------------
# control function for cy()
##---------------------------------------------------------------------------------------
cy.control <- function(inter = 20, degree= 3, order = 2, start=10,
method=c("ML","GAIC", "GCV", "EM", "ML-1"), k=2, ts=FALSE, ...)
{
## Control function for cy()
## MS Tuesday, March 24, 2009
## inter : is the number of equal space intervals in x
## degree: is the degree of the polynomial
## order refers to differences in the penalty for the coeficients
## order = 0 : white noise random effects
## order = 1 : random walk
## order = 2 : random walk of order 2
## order = 3 : random walk of order 3
if(inter <= 0) {
warning("the value of inter supplied is less than 0, the value of 10 was used instead")
inter <- 10 }
if(degree <= 0) {
warning("the value of degree supplied is less than zero or negative the default value of 3 was used instead")
degree <- 3}
if(order < 0) {
warning("the value of order supplied is zero or negative the default value of 2 was used instead")
order <- 2}
if(k <= 0) {
warning("the value of GAIC/GCV penalty supplied is less than zero the default value of 2 was used instead")
k <- 2}
method <- match.arg(method)
list(inter = inter, degree = degree, order = order, start=start, method= method, k=k, ts=as.logical(ts)[1])
}
#----------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------
gamlss.cy <- function(x, y, w, xeval = NULL, ...)
{
# --------------------------------------------------
# functions within
# a siple penalized regression
regpen <- function(y, X, w, lambda, D)
{
G <- lambda * t(D) %*% D
XW <- w * X
XWX <- t(XW) %*% X
beta <- solve(XWX + G, t(XW) %*% y)
fv <- X %*%beta
H <- solve(XWX + G, XWX)
# edf <- sum(diag(H))
fit <- list(beta = beta, edf = sum(diag(H)))
return(fit)
}
#--------------------------------------------------
# a similar as obove but extra saving
regpenEM <- function(y, X, w, lambda, order, D)
{
G <- lambda * t(D) %*% D
XW <- w * X
XWX <- t(XW) %*% X
beta <- solve(XWX + G, t(XW) %*% y)
fv <- X %*%beta
H <- solve(XWX + G, XWX)
V <- solve(XWX + G)
fit <- list(beta = beta, edf = sum(diag(H)), V=V)
return(fit)
}
#--------------------------------------------------
## function to find lambdas miimizing the local GAIC
fnGAIC <- function(lambda, k)
{
fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
fv <- X %*% fit$beta
GAIC <- sum(w*(y-fv)^2)+k*fit$edf
# cat("GAIC", GAIC, "\n")
GAIC
}
#--------------------------------------------------
## function to find the lambdas which minimise the local GCV
fnGCV <- function(lambda, k)
{
I.lambda.D <- (1+lambda*UDU$values)
edf <- sum(1/I.lambda.D)
y_Hy2 <- y.y-2*sum((yy^2)/I.lambda.D)+sum((yy^2)/((I.lambda.D)^2))
GCV <- (n*y_Hy2)/(n-k*edf)
GCV
}
#--------------------------------------------------
## local function to get edf from lambda
# edf_df <- function(lambda)
# {
# G <- lambda * t(D) %*% D
# H <- solve(XWX + G, XWX)
# edf <- sum(diag(H))
# # cat("edf", edf, "\n")
# (edf-df)
# }
## local function to get df using eigen values
edf1_df <- function(lambda)
{
edf <- sum(1/(1+lambda*UDU$values))
(edf-df)
}
#------------------------------------------------------------------
# the main function starts here
# get the attributes
X <- if (is.null(xeval)) as.matrix(attr(x,"X")) #the trick is for prediction
else as.matrix(attr(x,"X"))[seq(1,length(y)),]
D <- as.matrix(attr(x,"D")) # penalty
lambda <- as.vector(attr(x,"lambda")) # lambda
df <- as.vector(attr(x,"df")) # degrees of freedom
control <- as.list(attr(x, "control"))
gamlss.env <- as.environment(attr(x, "gamlss.env"))
startLambdaName <- as.character(attr(x, "NameForLambda"))
order <- control$order # the order of the penalty matrix
N <- sum(w!=0) # DS+FDB 3-2-14
n <- nrow(X) # the no of observations
p <- ncol(D) # the rows of the penalty matrix
tau2 <- sig2 <- NULL
# now the action depends on the values of lambda and df
#--------------------------------------------------------------------
lambdaS <- get(startLambdaName, envir=gamlss.env) ## geting the starting value
if (lambdaS>=1e+07) lambda <- 1e+07 # MS 19-4-12
if (lambdaS<=1e-07) lambda <- 1e-07 # MS 19-4-12
# case 1: if lambda is known just fit
if (is.null(df)&&!is.null(lambda)||!is.null(df)&&!is.null(lambda))
{
fit <- regpen(y, X, w, lambda, D)
fv <- X %*% fit$beta
} # case 2: if lambda is estimated -------------------------------------------
else if (is.null(df)&&is.null(lambda))
{ #
# cat("----------------------------","\n")
lambda <- lambdaS # MS 19-4-12## geting the starting value
# if ML ----------------------
switch(control$method,
"ML"={
for (it in 1:50)
{
fit <- regpen(y, X, w, lambda, D) # fit model
gamma. <- D %*% as.vector(fit$beta) # get the gamma differences
fv <- X %*% fit$beta # fitted values
sig2 <- sum(w * (y - fv) ^ 2) / (N - fit$edf) # DS+FDB 3-2-14
tau2 <- sum(gamma. ^ 2) / (fit$edf-order)# Monday, March 16, 2009 at 20:00 see LNP page 279
if(tau2<1e-7) tau2 <- 1.0e-7 # MS 19-4-12
lambda.old <- lambda
lambda <- sig2 / tau2 # maybe only 1/tau2 will do since it gives exactly the EM results see LM-1
if (lambda<1.0e-7) lambda<-1.0e-7 # DS Saturday, April 11, 2009 at 14:18
if (lambda>1.0e+7) lambda<-1.0e+7 # DS 29 3 2012
# cat("iter tau2 sig2",it,tau2, sig2, '\n')
if (abs(lambda-lambda.old) < 1.0e-7||lambda>1.0e7) break
assign(startLambdaName, lambda, envir=gamlss.env)
#cat("lambda",lambda, '\n')
}
},
"ML-1"={
for (it in 1:50)
{
fit <- regpen(y, X, w, lambda, D) # fit model
gamma. <- D %*% as.vector(fit$beta) # get the gamma differences
fv <- X %*% fit$beta # fitted values
sig2 <- 1 # sum(w * (y - fv) ^ 2) / (n - fit$edf)
tau2 <- sum(gamma. ^ 2) / (fit$edf-order)# Monday, March 16, 2009 at 20:00 see LNP page 279
lambda.old <- lambda
lambda <- sig2 / tau2 # 1/tau2
if (lambda<1.0e-7) lambda<-1.0e-7 # DS Saturday, April 11, 2009 at 14:18
if (abs(lambda-lambda.old) < 1.0e-7||lambda>1.0e7) break
assign(startLambdaName, lambda, envir=gamlss.env)
}
},
"EM"={
for (it in 1:500)
{
fit <- regpenEM(y, X, w, lambda, order, D)
gamma. <- D %*% as.vector(fit$beta)
vgamma <- sum(diag(D%*%fit$V%*%t(D))) # this is crucial for estimating the variance of gamma Monday, March 23, 2009
fv <- X %*% fit$beta
tau2 <- ((sum(gamma.^ 2))+vgamma)/length(gamma.)
lambda.old <- lambda
lambda <- 1 / tau2
if (lambda<1.0e-7) lambda<-1.0e-7 # DS Saturday, April 11, 2009 at 14:18
# cat("iter sigma_t^2",it, tau2, "lambda",lambda, '\n')
if (abs(lambda-lambda.old) < 1.0e-7||lambda>1.0e7) break
}
#cat("lambda",lambda, '\n')
assign(startLambdaName, lambda, envir=gamlss.env)
},
"GAIC"=
{
lambda <- nlminb(lambda, fnGAIC, lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
},
"GCV"={
#
QR <-qr(sqrt(w)*X)
wy <- sqrt(w)*y
y.y <- sum(wy^2)
Rinv <- solve(qr.R(QR))
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv)
yy <- t(UDU$vectors)%*%t(qr.Q(QR))%*%wy
lambda <- nlminb(lambda, fnGCV, lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
})
}
else # case 3 : if df are required---------------------------------
{
#method 1
# XW <- w * X
# XWX <- t(XW) %*% X
# lambda <- if (sign(edf_df(0))==sign(edf_df(100000))) 100000 # in case they have the some sign
# else uniroot(edf_df, c(0,100000))$root
#method 2 from Simon Wood (2006) pages 210-211, and 360
QR <- qr(sqrt(w)*X)
Rinv <- solve(qr.R(QR))
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv)
lambda <- if (sign(edf1_df(0))==sign(edf1_df(100000))) 100000 # in case they have the some sign
else uniroot(edf1_df, c(0,100000))$root
# if (any(class(lambda)%in%"try-error")) {lambda<-100000}
fit <- regpen(y, X, w, lambda, D)
fv <- X %*% fit$beta
}#--------------------------------------------------------------------------end of case 3
# I need to calculate the hat matrix here for the variance of the smoother
# this is not working for large X
# lev <- diag(X%*%solve(XWX + lambda * t(D) %*% D)%*%t(XW))
# lev <- (lev-.hat.WX(w,x))
# var <- lev/w #
# but this is working
waug <- as.vector(c(w, rep(1,nrow(D))))
xaug <- as.matrix(rbind(X,sqrt(lambda)*D))
lev <- hat(sqrt(waug)*xaug,intercept=FALSE)[1:n] # get the hat matrix
lev <- (lev-.hat.WX(w,x)) # subtract the linear since is already fitted
var <- lev/w # the variance of the smootherz
# se <- sqrt(diag(solve(XWX + lambda * t(D) %*% D)))
coefSmo <- list( coef = fit$beta,
fv = fv,
lambda = lambda,
edf = fit$edf,
sigb2 = tau2,
sige2 = sig2,
sigb = if (is.null(tau2)) NA else sqrt(tau2),
sige = if (is.null(sig2)) NA else sqrt(sig2),
method = control$method)
class(coefSmo) <- c("cy", "pb")
if (is.null(xeval)) # if no prediction
{
list(fitted.values=fv, residuals=y-fv, var=var, nl.df =fit$edf-1,
lambda=lambda, coefSmo=coefSmo)
}
else # for prediction
{
ll <- dim(as.matrix(attr(x,"X")))[1]
nx <- as.matrix(attr(x,"X"))[seq(length(y)+1,ll),]
pred <- drop(nx %*% fit$beta)
pred
}
}
#----------------------------------------------------------------------------------------
print.cy <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("Cycle P-spline fit using the gamlss function cy() \n")
cat("Degrees of Freedom for the fit :", x$edf, "\n")
cat("Random effect parameter sigma_b:", format(signif(x$sigb)), "\n")
cat("Smoothing parameter lambda :", format(signif(x$lambda)), "\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.