Nothing
## this is a cycle Penalized Beta regression splines smoother
## Paul Eilers, Mikis Stasinopoulos and Bob Rigby
## last modified Saturday, August 28, 2009
## add max.df July 24, 2018
#----------------------------------------------------------------------------------------
pbc<-function(x, df = NULL, lambda = NULL, max.df = NULL, control=pbc.control(...), ...)
{
## this function is based on Paul Eilers' penalised beta regression splines function
## lambda : is the smoothing parameter
## df : are the effective df's
## if both lambda=NULL and df=NULL then lambda is estimated using the different method
## methods are "ML", "ML-1", "EM", "GAIC" and "GCV"
## if df is set to number but lambda is NULL then df are used for smoothing
## if lambda is set to a number (whether df=NULL or not) lambda is used for smoothing
# ---------------------------------------------------
## local function
## creates the basis for p-splines
## Paul Eilers' function
#-------------------------------------------------------------------------------
bbase <- function(x, xl = min(x), xr = max(x), nseg = 10, deg = 3)
{
tpower <- function(x, t, p)
# Truncated p-th power function
(x - t) ^ p * (x > t)
# Construct B-spline basis
dx <- (xr - xl) / nseg
knots <- seq(xl - deg * dx, xr + deg * dx, by = dx)
P <- outer(x, knots, tpower, deg)
n <- dim(P)[2]
D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ^ deg)
B <- (-1) ^ (deg + 1) * P %*% t(D)
attr(B, "knots") <- knots[-c(1:(deg-1), (n-(deg-2)):n)]
B
}
#-------------------------------------------------------------------------------
## Paul Eilers' function
cbase <- function(x, xl, xr, ndx, deg)
{
# Construct circular B-spline basis
# Domain: xl to xr, number of segmants on domain: ndx, degree: deg
# Wrap around to cyclic basis
B0 <- bbase(x, xl = xl, xr = xr, nseg = ndx, deg = deg)
n <- ncol(B0) - deg # 13-3=10
cc <- (1:deg) + n # 11 12 13
B <- B0[, 1:n] # B is 100 X 10
B[, 1:deg] <- B[, 1:deg] + B0[, cc]
# B[,c(1,2,3)] = B[,c(1,2,3)] + B[,c(13,12,11)] Friday, BR and MS October 9, 2009
attr(B, "knots") <- attr(B0, "knots")
B
}
#------------------------------------------------------------------------------
## Paul Eilers' function
## Modified by Mikis
## the Cdiff function allows for order= 1 and 2
## for order 2 allows to have sinoide behaviour
## 2* cos(2 * pi / n or not
Cdiff <- function(n, order=2, sin=TRUE)
{
if (order==1)
{
D2 <- matrix(0, n, n + 1)
p <- c(1, -1)
for (k in 1:n) D2[k, c(0:1) + k] = p
D <- D2[, 2:(n + 1)]
D[, n] <- D[, n] + D2[, 1]
}
if (order==2)
{
D2 <- matrix(0, n, n + 2)
p <- if (sin==TRUE) c(-1, 2* cos(2 * pi / n), -1) else c(-1, 2, -1)
for (k in 1:n) D2[k, (0:2) + k] = p
D <- D2[, 2:(n + 1)]
D[, 1] <- D[, 1] + D2[, n + 2]
D[, n] <- D[, n] + D2[, 1]
}
D
}
#-------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
# the main function starts here
scall <- deparse(sys.call())
if (is.matrix(x)) stop("x is a matric declare it as a vector or factor")
lx <- length(x)
if (is(x,"factor")) # ||control$ts==TRUE
{
xval <- as.numeric(unique(x))
xl <- min(xval)
xr <- max(xval)
nl <- nlevels(x)
# function(x, xl, xr, ndx, deg)
X <- cbase(as.numeric(x), xl, xr, nl, 1) # create the basis
}
else
{
no.dist.val <- length(table(x))
control$inter <- if (lx<100) 10 else control$inter
control$inter <- if (no.dist.val<=control$inter) no.dist.val else control$inter
xl <- min(x)
xr <- max(x)
xmax <- xr #+ 0.01 * (xr - xl) # BR and MS Friday, October 9, 2009
xmin <- xl #- 0.01 * (xr - xl)
X <- cbase(x, xl, xr, control$inter, control$degree) # create the basis
}
# Cyclic penalty
nb <- ncol(X)
D <- Cdiff(nb, order=control$order, sin=control$sin)
# D <- diff(D) # not know yt if
if(!is.null(df)) # degrees of freedom
{
if (df>(dim(X)[2]-2))
{df <- 3;
warning("The df's exceed the number of columns of the design matrix", "\n", " they are set to 3") }
df <- if (df < 1) 1 else df+1
if (df < 1) warning("the df are set to 1")
}
## -------- check max.df (new 7-2018 MS)
if (is.null(max.df)) max.df <- dim(X)[2]-2
if (max.df>(dim(X)[2]-2))
{
max.df <- dim(X)[2]-2
warning("The max.df's are set to", dim(X)[2]-2, "\n")
}
## here we get the gamlss environment and a random name to save
## the starting values for lambda within gamlss()
## get gamlss environment
#--------
rexpr<-regexpr("gamlss",sys.calls())
for (i in 1:length(rexpr)){
position <- i
if (rexpr[i]==1) break}
gamlss.environment <- sys.frame(position)
#--------
## get a random name to use it in the gamlss() environment
#--------
sl <- sample(letters, 4)
fourLetters <- paste(paste(paste(sl[1], sl[2], sep=""), sl[3], sep=""),sl[4], sep="")
startLambdaName <- paste("start.Lambda",fourLetters, sep=".")
## put the starting values in the gamlss()environment
#--------
assign(startLambdaName, control$start, envir=gamlss.environment)
#--------
xvar <- rep(0,length(x)) #
attr(xvar, "control") <- control
attr(xvar, "D") <- D
attr(xvar, "X") <- X
attr(xvar, "df") <- df
attr(xvar, "max.df") <- max.df
attr(xvar, "call") <- substitute(gamlss.pbc(data[[scall]], z, w))
attr(xvar, "lambda") <- lambda
attr(xvar, "gamlss.env") <- gamlss.environment
attr(xvar, "NameForLambda") <- startLambdaName
attr(xvar, "Name") <- deparse(substitute(x))
attr(xvar, "x") <- x
attr(xvar, "class") <- "smooth"
xvar
}
#----------------------------------------------------------------------------------------
# control function for cy()
##---------------------------------------------------------------------------------------
pbc.control <- function(inter = 20, degree= 3, order = 2, start=10,
method=c("ML","GAIC", "GCV"), k=2, sin=TRUE, ...)
{
## Control function for cy()
## MS Tuesday, March 24, 2009
## inter : is the number of equal space intervals in x
## degree: is the degree of the polynomial
## order refers to differences in the penalty for the coeficients
## order = 0 : white noise random effects
## order = 1 : random walk
## order = 2 : random walk of order 2
## order = 3 : random walk of order 3
if(inter <= 0) {
warning("the value of inter supplied is less than 0, the value of 10 was used instead")
inter <- 10 }
if(degree <= 0) {
warning("the value of degree supplied is less than zero or negative the default value of 3 was used instead")
degree <- 3}
if(order < 0) {
warning("the value of order supplied is zero or negative the default value of 2 was used instead")
order <- 2}
if(order >= 3) {
warning("the value of order supplied is greater than 2 the default value of 2 was used instead")
order <- 2}
if(k <= 0) {
warning("the value of GAIC/GCV penalty supplied is less than zero the default value of 2 was used instead")
k <- 2}
method <- match.arg(method)
list(inter = inter, degree = degree, order = order, start=start, method= method, k=k, sin=as.logical(sin)[1])
}
#----------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------
gamlss.pbc <- function(x, y, w, xeval = NULL, ...)
{
# --------------------------------------------------
#-------------------------------------------------------------------------------
regpen <- function(y, X, w, lambda, D)# original
{
# p <- dim(X)[2]
# qrX <- qr(sqrt(w)*X, tol=.Machine$double.eps^.8)
# R <- qr.R(qrX)
RD <- rbind(R,sqrt(lambda)*D) # 2p x p matrix
svdRD <- svd(RD) # U 2pxp D pxp V pxp
## take only the important values
rank <- sum(svdRD$d>max(svdRD$d)*.Machine$double.eps^.8)
U1 <- svdRD$u[1:p,1:rank] # U1 p x rank
# I am not sure what are consequances in introducing this ???
y1 <- t(U1)%*%Qy # t(Q)%*%(sqrt(w)*y) # rankxp pxn nx1 => rank x 1 vector
# beta <- svdRD$v[,1:rank] %*%diag(1/svdRD$d[1:rank])%*%y1
beta <- svdRD$v[,1:rank] %*%(y1/svdRD$d[1:rank])
# 1/(svdRD$d^2)
#print((svdRD$v)%*%t(svdRD$v), digits=1)
HH <- (svdRD$u)[1:p,1:rank]%*%t(svdRD$u[1:p,1:rank])
df <- sum(diag(HH))
fit <- list(beta = beta, edf = df)
return(fit)
}
#-----------------------------------------------------------------------
## function to find lambdas miimizing the local GAIC
fnGAIC <- function(lambda, k)
{
fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
fv <- X %*% fit$beta
GAIC <- sum(w*(y-fv)^2)+k*fit$edf
# cat("GAIC", GAIC, "\n")
GAIC
}
#------------------------------------------------------------------------
# ## function to find the lambdas which minimise the local GCV
fnGCV <- function(lambda, k)
{
I.lambda.D <- (1+lambda*UDU$values)
edf <- sum(1/I.lambda.D)
y_Hy2 <- y.y-2*sum((yy^2)/I.lambda.D)+sum((yy^2)/((I.lambda.D)^2))
GCV <- (n*y_Hy2)/(n-k*edf)^2
GCV
}
#-----------------------------------------------------------------------
## local function to get df using eigen values
edf1_df <- function(lambda)
{
edf <- sum(1/(1+lambda*UDU$values))
(edf-df)
}
#------ new 22-7-18------- to get max.df
edf2_df <- function(loglambda)
{
lambda <- exp(loglambda)
I.lambda.D <- (1+lambda*UDU$values)
edf <- sum(1/I.lambda.D)
(edf-max.df)
}
#------------------------------------------------------------------------
# the main function starts here
# get the attributes
if (is.null(xeval)) # if no prediction
{
X <- if (is.null(xeval)) as.matrix(attr(x,"X")) #the trick is for prediction
else as.matrix(attr(x,"X"))[seq(1,length(y)),]
xvar <- as.matrix(attr(x,"x")) # the x term
Name <- as.character(attr(x, "Name"))
D <- as.matrix(attr(x,"D")) # penalty
lambda <- as.vector(attr(x,"lambda")) # lambda
df <- as.vector(attr(x,"df")) # degrees of freedom
max.df <- as.vector(attr(x,"max.df")) # degrees of freedom
control <- as.list(attr(x, "control"))
gamlss.env <- as.environment(attr(x, "gamlss.env"))
startLambdaName <- as.character(attr(x, "NameForLambda"))
order <- control$order # the order of the penalty matrix
N <- sum(w!=0) # DS+FDB 3-2-14
n <- nrow(X) # the no of observations
p <- ncol(D) # the rows of the penalty matrix
qrX <- qr(sqrt(w)*X, tol=.Machine$double.eps^.8)
R <- qr.R(qrX)
Q <- qr.Q(qrX)
Qy <- t(Q)%*%(sqrt(w)*y)
tau2 <- sig2 <- NULL
# now the action depends on the values of lambda and df
#-----------------------------------------------------------------------
lambdaS <- get(startLambdaName, envir=gamlss.env) ## geting the starting value
if (lambdaS>=1e+07) lambda <- 1e+07 # MS 19-4-12
if (lambdaS<=1e-07) lambda <- 1e-07 # MS 19-4-12
# case 1: if lambda is known just fit ---------------------------------
if (is.null(df)&&!is.null(lambda)||!is.null(df)&&!is.null(lambda))
{
fit <- regpen(y, X, w, lambda, D)
fv <- X %*% fit$beta
} # case 2: if lambda is estimated -----------------------------------
else if (is.null(df)&&is.null(lambda))
{ #
# cat("----------------------------","\n")
lambda <- lambdaS # MS 19-4-12## geting the starting value
# if ML -----------------------------------------------------------ML
switch(control$method,
"ML"={
for (it in 1:50)
{
fit <- regpen(y, X, w, lambda, D) # fit model
gamma. <- D %*% as.vector(fit$beta) # get the gamma differences
fv <- X %*% fit$beta # fitted values
sig2 <- sum(w * (y - fv) ^ 2) / (N - fit$edf) # DS+FDB 3-2-14
tau2 <- sum(gamma. ^ 2) / (fit$edf-order)# see LNP page 279
if(tau2<1e-7) tau2 <- 1.0e-7 # MS 19-4-12
lambda.old <- lambda
lambda <- sig2 / tau2 # maybe only 1/tau2 will do since it gives exactly the EM results see LM-1
if (lambda<1.0e-7) lambda<-1.0e-7 # DS Saturday, April 11, 2009 at 14:18
if (lambda>1.0e+7) lambda<-1.0e+7 # DS 29 3 2012
# cat("iter tau2 sig2",it,tau2, sig2, '\n')
if (abs(lambda-lambda.old) < 1.0e-7||lambda>1.0e10) break
assign(startLambdaName, lambda, envir=gamlss.env)
#cat("lambda",lambda, '\n')
}
},
"GAIC"= #-------------------------------------------------------- GAIC
{
lambda <- nlminb(lambda, fnGAIC, lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
},
"GCV"={ #----------------------------------------------------------- GCV
wy <- sqrt(w)*y
y.y <- sum(wy^2)
Rinv <- solve(R)
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv)
yy <- t(UDU$vectors)%*%Qy #t(qr.Q(QR))%*%wy
lambda <- nlminb(lambda, fnGCV, lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
})
# new 22-7-2018 MS ----------------------------------------- check max.df
# now we check whether the fitted df are greater that max.df
if (fit$edf > max.df)
{
Rinv <- try(solve(R), silent = TRUE)
if (any(class(Rinv) %in% "try-error"))
stop("The B-basis for ",Name," is singular, transforming the variable may help","\n")
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv, symmetric=TRUE, only.values=TRUE)
loglambda <- if (sign(edf2_df(-30))==sign(edf2_df(30))) 30
else uniroot(edf2_df, c(-30,30))$root
lambda <- exp(loglambda)
fit <- regpen(y, X, w, lambda, D)
if (abs(fit$edf-max.df)>0.1) warning("the target df's are not acheived, try to reduce the no. of knot intervals \n in pb(). eg. inter=10")
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
}
#---------- the max.df is finished here--------------------------------
}
else # case 3 : if df are required-----------------------------------df
{
Rinv <- try(solve(R), silent = TRUE)
if (any(class(Rinv) %in% "try-error"))
stop("The B-basis for ",Name," is singular, transforming the variable may help","\n")
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv)
lambda <- if (sign(edf1_df(0))==sign(edf1_df(100000))) 100000 # in case they have the some sign
else uniroot(edf1_df, c(0,100000))$root
# if (any(class(lambda)%in%"try-error")) {lambda<-100000}
fit <- regpen(y, X, w, lambda, D)
fv <- X %*% fit$beta
}#--------------------------------------------------------------------------end of case 3
# but this is working
#Version 4 --------------------------------------------------
waug <- as.vector(c(w, rep(1,nrow(D))))
xaug <- as.matrix(rbind(X,sqrt(lambda)*D))
lev <- hat(sqrt(waug)*xaug,intercept=FALSE)[1:n] # get the hat matrix
var <- lev/w
# the variance of the smoother
# se <- sqrt(diag(solve(XWX + lambda * t(D) %*% D)))Q
suppressWarnings(Fun <- splinefun(xvar, fv, method="periodic"))
coefSmo <- list( coef = fit$beta,
fv = fv,
lambda = lambda,
edf = fit$edf,
sigb2 = tau2,
sige2 = sig2,
sigb = if (is.null(tau2)) NA else sqrt(tau2),
sige = if (is.null(sig2)) NA else sqrt(sig2),
method = control$method,
name = Name,
knots = attr(X,"knots"),
fun = Fun)
class(coefSmo) <- c("pbc", "pb")
list(fitted.values=fv, residuals=y-fv, var=var, nl.df = fit$edf-1,
lambda=lambda, coefSmo=coefSmo)
}
else # for prediction
{
position <- 0
rexpr <- regexpr("predict.gamlss",sys.calls())
for (i in 1:length(rexpr)){
position <- i
if (rexpr[i]==1) break}
#cat("New way of prediction in pbc() (starting from GAMLSS version 5.0-3)", "\n")
gamlss.environment <- sys.frame(position)
param <- get("what", envir=gamlss.environment)
object <- get("object", envir=gamlss.environment)
TT <- get("TT", envir=gamlss.environment)
smooth.labels <- get("smooth.labels", envir=gamlss.environment)
ll <- dim(as.matrix(attr(x,"X")))[1]
newxval <- as.vector(attr(x,"x"))[seq(length(y)+1,ll)]
oldxval <- as.vector(attr(x,"x"))[seq(1,length(y))]
if (any(newxval < min(oldxval) | newxval > max(oldxval)))
warning("extrapolation in pbc() is not reliable")
pred <- getSmo(object, parameter= param, which=which(smooth.labels==TT))$fun(newxval)
# pred <- getSmo(object, parameter= param, which=which(TT%in%smooth.labels))$fun(xeval)
# ll <- dim(as.matrix(attr(x,"X")))[1]
# nx <- as.matrix(attr(x,"X"))[seq(length(y)+1,ll),]
# pred <- drop(nx %*% fit$beta)
pred
}
}
#----------------------------------------------------------------------------------------
print.pbc <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("Cycle P-spline fit using the gamlss function pbc() \n")
cat("Degrees of Freedom for the fit :", x$edf, "\n")
cat("Random effect parameter sigma_b:", format(signif(x$sigb)), "\n")
cat("Smoothing parameter lambda :", format(signif(x$lambda)), "\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.