R/bin.R

Defines functions bin_out bin_vector bin_breaks_bins bin_breaks_width bin_breaks print.ggplot2_bins is_bins bins

bins <- function(breaks, closed = "right",
                 fuzz = NULL) {
  check_numeric(breaks)
  closed <- arg_match0(closed, c("right", "left"))
  breaks <- sort(breaks)

  # Adapted base::hist - this protects from floating point rounding errors
  fuzz <- fuzz %||% 1e-08 * stats::median(diff(breaks[is.finite(breaks)]))
  if (!is.finite(fuzz)) { # happens when 0 or 1 finite breaks are given
    fuzz <- .Machine$double.eps * 1e3
  }
  if (closed == "right") {
    fuzzes <- c(-fuzz, rep.int(fuzz, length(breaks) - 1))
  } else {
    fuzzes <- c(rep.int(-fuzz, length(breaks) - 1), fuzz)
  }

  structure(
    list(
      breaks = breaks,
      fuzzy = breaks + fuzzes,
      right_closed = closed == "right"
    ),
    class = "ggplot2_bins"
  )
}

is_bins <- function(x) inherits(x, "ggplot2_bins")

#' @export
print.ggplot2_bins <- function(x, ...) {
  n <- length(x$breaks)
  cat("<Bins>\n")

  if (x$right_closed) {
    left <- c("[", rep("(", n - 2))
    right <- rep("]", n - 1)
  } else {
    left <- rep("[", n - 1)
    right <- c(rep(")", n - 2), "]")
  }

  breaks <- format(x$breaks)
  bins <- paste0("* ", left, breaks[-n], ",", breaks[-1], right)
  cat(bins, sep = "\n")
  cat("\n")
}

# Compute parameters -----------------------------------------------------------

bin_breaks <- function(breaks, closed = c("right", "left")) {
  bins(breaks, closed)
}

bin_breaks_width <- function(x_range, width = NULL, center = NULL,
                             boundary = NULL, closed = c("right", "left")) {
  if (length(x_range) != 2) {
    cli::cli_abort("{.arg x_range} must have two elements.")
  }

  # binwidth seems to be the argument name supplied to width. (stat-bin and stat-bindot)
  check_number_decimal(width, min = 0, allow_infinite = FALSE, arg = "binwidth")

  if (!is.null(boundary) && !is.null(center)) {
    cli::cli_abort("Only one of {.arg boundary} and {.arg center} may be specified.")
  } else if (is.null(boundary)) {
    if (is.null(center)) {
      # If neither edge nor center given, compute both using tile layer's
      # algorithm. This puts min and max of data in outer half of their bins.
      boundary <- width / 2

    } else {
      # If center given but not boundary, compute boundary.
      boundary <- center - width / 2
    }
  }

  # Find the left side of left-most bin: inputs could be Dates or POSIXct, so
  # coerce to numeric first.
  x_range <- as.numeric(x_range)
  width <- as.numeric(width)
  boundary <- as.numeric(boundary)
  shift <- floor((x_range[1] - boundary) / width)
  origin <- boundary + shift * width

  # Small correction factor so that we don't get an extra bin when, for
  # example, origin = 0, max(x) = 20, width = 10.
  max_x <- x_range[2] + (1 - 1e-08) * width

  if (isTRUE((max_x - origin) / width > 1e6)) {
    cli::cli_abort(c(
      "The number of histogram bins must be less than 1,000,000.",
      "i" = "Did you make {.arg binwidth} too small?"
    ))
  }
  breaks <- seq(origin, max_x, width)

  if (length(breaks) == 1) {
    # In exceptionally rare cases, the above can fail and produce only a
    # single break (see issue #3606). We fix this by adding a second break.
    breaks <- c(breaks, breaks + width)
  }

  bin_breaks(breaks, closed = closed)
}

bin_breaks_bins <- function(x_range, bins = 30, center = NULL,
                            boundary = NULL, closed = c("right", "left")) {
  if (length(x_range) != 2) {
    cli::cli_abort("{.arg x_range} must have two elements.")
  }

  check_number_whole(bins, min = 1)
  if (zero_range(x_range)) {
    # 0.1 is the same width as the expansion `default_expansion()` gives for 0-width data
    width <- 0.1
  } else if (bins == 1) {
    width <- diff(x_range)
    boundary <- x_range[1]
  } else {
    width <- (x_range[2] - x_range[1]) / (bins - 1)
  }

  bin_breaks_width(x_range, width, boundary = boundary, center = center,
    closed = closed)
}


# Compute bins ------------------------------------------------------------

bin_vector <- function(x, bins, weight = NULL, pad = FALSE) {
  check_object(bins, is_bins, "a {.cls ggplot2_bins} object")

  if (all(is.na(x))) {
    return(bin_out(length(x), NA, NA, xmin = NA, xmax = NA))
  }

  if (is.null(weight)) {
    weight <- rep(1, length(x))
  } else {
    weight[is.na(weight)] <- 0
  }

  bin_idx <- cut(x, bins$fuzzy, right = bins$right_closed,
    include.lowest = TRUE)
  bin_count <- as.numeric(tapply(weight, bin_idx, sum, na.rm = TRUE))
  bin_count[is.na(bin_count)] <- 0

  bin_x <- (bins$breaks[-length(bins$breaks)] + bins$breaks[-1]) / 2
  bin_widths <- diff(bins$breaks)

  # Pad row of 0s at start and end
  if (pad) {
    bin_count <- c(0, bin_count, 0)

    width1 <- bin_widths[1]
    widthn <- bin_widths[length(bin_widths)]

    bin_widths <- c(width1, bin_widths, widthn)
    bin_x <- c(bin_x[1] - width1, bin_x, bin_x[length(bin_x)] + widthn)
  }

  # Add row for missings
  if (any(is.na(bins))) {
    bin_count <- c(bin_count, sum(is.na(bins)))
    bin_widths <- c(bin_widths, NA)
    bin_x <- c(bin_x, NA)
  }

  bin_out(bin_count, bin_x, bin_widths)
}

bin_out <- function(count = integer(0), x = numeric(0), width = numeric(0),
  xmin = x - width / 2, xmax = x + width / 2) {
  density <- count / width / sum(abs(count))

  data_frame0(
    count = count,
    x = x,
    xmin = xmin,
    xmax = xmax,
    width = width,
    density = density,
    ncount = count / max(abs(count)),
    ndensity = density / max(abs(density)),
    .size = length(count)
  )
}

Try the ggplot2 package in your browser

Any scripts or data that you put into this service are public.

ggplot2 documentation built on June 22, 2024, 11:35 a.m.