Nothing
########################################################################################
## GLLVM fourth corner model, with estimation done via Laplace and Variational approximation using TMB-package
## Original author: Jenni Niku
##########################################################################################
trait.TMB <- function(
y, X = NULL,TR=NULL,formula=NULL, num.lv = 2, family = "poisson", num.lv.cor=0, corWithin = FALSE,
Lambda.struc = "unstructured", Ab.struct = "unstructured", Ar.struc="diagonal", row.eff = FALSE, reltol = 1e-6, seed = NULL,
maxit = 3000, max.iter=200, start.lvs = NULL, offset=NULL, sd.errors = FALSE,trace=FALSE,
link="logit",n.init=1,n.init.max = 10, start.params=NULL,start0=FALSE,optimizer="optim", dr=NULL, dLV=NULL, rstruc =0, cstruc = c("diag","diag"), dist = matrix(0), scalmax=10, MaternKappa = 1.5,
starting.val="res",method="VA",randomX=NULL,Power=1.5,diag.iter=1, Ab.diag.iter = 0, dependent.row = FALSE,
Lambda.start=c(0.2, 0.5), jitter.var=0, yXT = NULL, scale.X = FALSE, randomX.start = "zero", beta0com = FALSE, rangeP = NULL,
zeta.struc = "species", quad.start=0.01, start.struc="LV",quadratic=FALSE, optim.method = "BFGS", disp.group = NULL, NN=matrix(0), setMap = NULL, Ntrials = 1) {
if(is.null(X) && !is.null(TR)) stop("Unable to fit a model that includes only trait covariates")
if(!is.null(start.params)) starting.val <- "zero"
if(!(family %in% c("poisson","negative.binomial","binomial","tweedie","ZIP", "ZINB", "gaussian", "ordinal", "gamma", "exponential", "beta", "betaH", "orderedBeta")))
stop("Selected family not permitted...sorry!")
if(!(Lambda.struc %in% c("unstructured","diagonal","bdNN","UNN")))
stop("Lambda matrix (covariance of variational distribution for latent variable) not permitted...sorry!")
objrFinal <- optrFinal <- NULL
cstrucn = c(0,0)
for (i in 1:length(cstruc)) {
cstrucn[i] = switch(cstruc[i], "diag" = 0, "corAR1" = 1, "corExp" = 2, "corCS" = 3, "corMatern" = 4)
}
term <- NULL
n <- nr <- nu <- dim(y)[1]; p <- dim(y)[2];
times = 1
if(is.null(disp.group)) disp.group <- 1:NCOL(y)
if(family=="binomial" && length(Ntrials) != 1 && length(Ntrials) != p){
stop("Supplied Ntrials is of the wrong length, should be of length 1 or the number of columns in y.")
}else if(family=="binomial" && length(Ntrials) == 1){
Ntrials <- rep(Ntrials, p)
}
# Structure for row effects
model = 1
xr = NULL
if(rstruc==0){ # No structure
dr <- diag(n)
}
if(num.lv.cor==0){ # No structure
dLV <- diag(n)
}
Astruc = 0;
scaledc = 0;
rho.lv =NULL
if(rstruc>0){#rstruc
dist<-as.matrix(dist)
if(is.null(dr)) stop("Define structure for row params if 'rstruc == ",rstruc,"'.")
if(rstruc==1){# group specific
nr <- dim(dr)[2]
if((cstrucn[1] == 2) | (cstrucn[1] == 4)) {
if(is.null(dist) || NROW(dist)!=nr)
dist=matrix(1:nr)
if(NROW(dist)!=nr)
stop("Number of rows in 'dist' should be same as maximum number of groups when corWithin = FALSE")
}
}
if(rstruc==2) { # correlated within groups
if(is.null(dr)) stop("Define structure for row params if 'rstruc == 2'.")
nr <- dim(dr)[2]
times <- n/nr#dim(dr)[1]
if((cstrucn[1] == 2) | (cstrucn[1] == 4)) {
if(is.null(dist) || NROW(dist)!=times)
dist=matrix(1:times)
if(NROW(dist)!=times)
stop("Number of rows in 'dist' should be same as maximum number of units within groups when corWithin = TRUE")
}
}
if((cstrucn[1] == 2) | (cstrucn[1] == 4)) {
if(is.null(rangeP)) {
rangeP = AD1 = (apply(as.matrix(dist),2,max)-apply(as.matrix(dist),2,min))/scalmax
} else {
AD1 = rep(rangeP, ncol(dist))[1:ncol(dist)]
}
scaledc<-log(AD1)
# AD1<-pmax(apply(as.matrix(dist),2,function(x) min(dist(unique(x), diag = FALSE))),1)
# md<-min(dist(as.matrix(dist)%*%diag(1/(AD1), length(AD1)), diag = FALSE))/2
# if(md>5) AD1=AD1*md
# if(!is.null(setMap$scaledc)) {
# if( (length(setMap$scaledc)!= NCOL(dist))) stop("setMap$scaledc must be a numeric vector and have length that is same as the number of columns in 'dist'.")
# scaledc[is.na(setMap$scaledc)]=0
# }
}
if(nr==1) Ar.struc = "diagonal"
}
if(num.lv.cor > 0){#rstruc
dist<-as.matrix(dist)
if(is.null(dLV)) stop("Define structure for row params if 'rstruc == ",rstruc,"'.")
# LVs correlated within groups
if(is.null(dLV)) stop("Define structure for row params if 'rstruc == 2'.")
nu <- dim(dLV)[2]
times <- n/nu#dim(dLV)[1]
if((cstrucn[2] == 2) | (cstrucn[2] == 4)) {
if(corWithin){
if(is.null(dist))
dist=matrix(1:times)
if(NROW(dist)!=times)
stop("Number of rows in 'dist' should be same as maximum number of units within groups when corWithin = TRUE")
} else {
if(is.null(dist))
dist=matrix(1:nu)
if(NROW(dist)!=nu)
stop("Number of rows in 'dist' should be same as maximum number of groups when corWithin = FALSE")
}
if(is.null(rangeP)) {
rangeP = AD1 = (apply(as.matrix(dist),2,max)-apply(as.matrix(dist),2,min))/scalmax
} else {
AD1 = rep(rangeP, ncol(dist))[1:ncol(dist)]
}
scaledc<-log(AD1)
}
rho_lvc<- matrix(rep(0, num.lv.cor))
if(Lambda.struc == "unstructured") {Astruc=1}
if(Lambda.struc == "bdNN") {Astruc=2}
if(Lambda.struc %in% c("diagU","UNN","UU")) {
if(num.lv.cor>1){
if(Lambda.struc == "UU") {Astruc=3; }#Lambda.struc = "unstructured"}
if(Lambda.struc == "UNN" && num.lv.cor>0) {Astruc=4; Lambda.struc = "bdNN"}
if(Lambda.struc == "diagU" && num.lv.cor>0) {Astruc=5; Lambda.struc = "diagonal"}
} else {
if(Lambda.struc == "UU") {Astruc=1; }#Lambda.struc = "unstructured"}
if(Lambda.struc == "UNN" && num.lv.cor>0) {Astruc=2; Lambda.struc = "bdNN"}
if(Lambda.struc == "diagU" && num.lv.cor>0) {Astruc=0; Lambda.struc = "diagonal"}
}
}
}
y <- as.data.frame(y)
formula1 <- formula
beta0com0 = beta0com
if(method=="VA" && (family =="binomial")){ link <- "probit"}
jitter.var.r <- 0
if(length(jitter.var)>1){
jitter.var.r <- jitter.var[2]
jitter.var <- jitter.var[1]
}
if(NCOL(X) < 1) stop("No covariates in the model, fit the model using gllvm(y,family=",family,"...)")
# change categorical variables to dummy variables
num.X <- 0
X.new <- NULL
if(!is.null(X)) {
num.X <- dim(X)[2]
for (i in 1:num.X) {
if(!is.factor(X[,i])) {
if(length(unique(X[,i]))>2){ Xi <- scale(X[,i], scale = scale.X, center = scale.X) } else { Xi <- X[,i] }
X[,i] <- Xi
X.new <- cbind(X.new,Xi); if(!is.null(colnames(X)[i])) colnames(X.new)[dim(X.new)[2]] <- colnames(X)[i]
} else {
dum <- model.matrix( ~ X[,i]-1)
dum <- as.matrix(dum[, !(colnames(dum) %in% c("(Intercept)"))])
# colnames(dum) <- paste(colnames(X)[i], levels(X[,i])[ - 1], sep = "")
colnames(dum) <- paste(colnames(X)[i], levels(X[,i]), sep = "")
X.new <- cbind(X.new, dum)
}
}
X.new <- data.frame(X.new);
}
num.T <- 0
T.new <- NULL
if(!is.null(TR)) {
num.T <- dim(TR)[2]
T.new <- matrix(0, p, 0)
if(num.T > 0){
for (i in 1 : num.T) {
#if(!is.factor(TR[,i]) && length(unique(TR[,i])) > 2) { #!!!
if(is.numeric(TR[,i]) && length(unique(TR[,i])) > 2) {
TR[,i] <- scale(TR[,i])
T.new <- cbind(T.new,scale(TR[,i], scale = scale.X, center = scale.X)); colnames(T.new)[dim(T.new)[2]] <- colnames(TR)[i]
} else {
if(!is.factor(TR[,i])) TR[,i] <- factor(TR[,i]) #!!!
dum <- model.matrix(~TR[,i]-1)
colnames(dum) <- paste(colnames(TR)[i],levels(TR[,i]),sep="")
T.new <- cbind(T.new,dum)
}
}
T.new <- data.matrix(T.new);
}
}
if(is.null(formula)){
n1 <- colnames(X)
n2 <- colnames(TR)
form1 <- paste("",n1[1],sep = "")
if(length(n1)>1){
for(i1 in 2:length(n1)){
form1 <- paste(form1,n1[i1],sep = "+")
}}
formula <- paste("y~",form1,sep = "")
formula <- paste(formula, form1,sep = " + (")
formula <- paste(formula, ") : (", sep = "")
formula <- paste(formula, n2[1], sep = "")
if(length(n2) > 1){
for(i2 in 2:length(n2)){
formula <- paste(formula, n2[i2], sep = "+")
}}
formula1 <- paste(formula, ")", sep = "")
formula <- formula(formula1)
}
# Define design matrix for covariates
if(!is.null(X) || !is.null(TR)){
yX <- cbind(cbind(X,id = 1:nrow(y))[rep(1:nrow(X), times=ncol(y)),], species = rep(1:ncol(y), each= nrow(y)), y = c(as.matrix(y))) #reshape(data.frame(cbind(y, X)), direction = "long", varying = colnames(y), v.names = "y")
TR2 <- data.frame(species = 1:p, TR)
if(is.null(yXT)){
yXT <- merge(yX, TR2, by = "species")
}
data <- yXT
m1 <- model.frame(formula, data = data)
term <- terms(m1)
Xd <- as.matrix(model.matrix(formula, data = data))
nXd <- colnames(Xd)
Xd <- as.matrix(Xd[, !(nXd %in% c("(Intercept)"))])
colnames(Xd) <- nXd[!(nXd %in% c("(Intercept)"))]
if(!is.null(X.new)) fx <- apply(matrix(sapply(colnames(X.new), function(x){grepl(x, colnames(Xd))}), ncol(Xd), ncol(X.new)), 2, any)
ft <- NULL;
if(NCOL(T.new) > 0) {
ft <- apply(matrix(sapply(colnames(T.new), function(x){ grepl(x, colnames(Xd)) }), ncol(Xd), ncol(T.new)), 2, any)
}
X1 <- as.matrix(X.new[,fx]);
TR1 <- as.matrix(T.new[,ft]);
colnames(X1) <- colnames(X.new)[fx]; colnames(TR1)<-colnames(T.new)[ft];
nxd <- colnames(Xd)
formulab <- paste("~",nxd[1],sep = "");
if(length(nxd)>1) for(i in 2:length(nxd)) formulab <- paste(formulab,nxd[i],sep = "+")
formula1 <- formulab
}
if(num.lv == 1) Lambda.struc <- "diagonal" ## Prevents it going to "unstructured" loops and causing chaos
trial.size <- 1
y <- as.matrix(y)
if(!is.numeric(y)) stop("y must a numeric. If ordinal data, please convert to numeric with lowest level equal to 1. Thanks")
if(family == "ordinal") {
y00<-y
if(min(y)==0){ y=y+1}
max.levels <- apply(y,2,function(x) length(min(x):max(x)))
if(any(max.levels == 1)&zeta.struc=="species" || all(max.levels == 2)&zeta.struc=="species")
stop("Ordinal data requires all columns to have at least has two levels. If all columns only have two levels, please use family == binomial instead. Thanks")
if(any(!apply(y,2,function(x)all(diff(sort(unique(x)))==1)))&zeta.struc=="species"){
warning("Can't fit ordinal model if there are species with missing classes. Setting 'zeta.struc = `common`'")
zeta.struc = "common"
}
if(!all(min(y)==apply(y,2,min))&zeta.struc=="species"){
stop("For ordinal data and zeta.struc=`species` all species must have the same minimum category.Setting 'zeta.struc = `common`'.")
zeta.struc = "common"
}
if(any(diff(sort(unique(c(y))))!=1)&zeta.struc=="common")
stop("Can't fit ordinal model if there are missing response classes. Please reclassify.")
}
if(is.null(rownames(y))) rownames(y) <- paste("Row",1:n,sep="")
if(is.null(colnames(y))) colnames(y) <- paste("Col",1:p,sep="")
if(!is.null(X)) { if(is.null(colnames(X))) colnames(X) <- paste("x",1:ncol(X),sep="") }
if(family == "orderedBeta") {
if (!(method %in% c("VA", "EVA"))) #"tweedie",
stop("family=\"", family, "\" : family not implemented with LA method, change the method to 'VA'")
if((sum(y==1) + sum(y==0))==0){
stop("No zeros or ones in the data, so use 'family = `beta` '")
}
if(!all(colSums(y==1)>0) & !all(colSums(y==0)>0)){
warning("All species do not have zeros and ones. Setting 'zeta.struc = `common`'")
zeta.struc = "common"
}
}
out <- list(y = y, X = X1, TR = TR1, num.lv = num.lv, row.eff = row.eff, logL = Inf, family = family, offset=offset,randomX=randomX,X.design=Xd,terms=term, method = method, Ntrials = Ntrials)
if(is.null(formula) && is.null(X) && is.null(TR)){formula ="~ 1"}
n.i <- 1;
### Seeds
# If number of seeds is less than n.init, sample the seeds randomly, but using the given seed
if((length(seed) >1) & (length(seed) < n.init)) {
stop("Seed length doesn't match with the number of initial starts.")
}
if(!is.null(seed) & (length(seed) ==1) & (length(seed) < n.init)) {
set.seed(seed)
seed <- sample(1:10000, n.init)
}
# If no seed is sampled it is randomly drawn
if(is.null(seed)&starting.val!="zero"){
seed <- sample(1:10000, n.init)
}
# if(n.init > 1) seed <- sample(1:10000, n.init)
# n.init model fits
while(n.i <= n.init){
randomXb <- NULL
# Design for random slopes
if(!is.null(randomX)){
#
if(num.lv>0 && randomX.start == "res" && starting.val == "res") {randomXb <- randomX}
#
xb <- as.matrix(model.matrix(randomX, data = data.frame(X)))
rnam <- colnames(xb)[!(colnames(xb) %in% c("(Intercept)"))]
xb <- as.matrix(xb[, rnam]); #as.matrix(X.new[, rnam])
if(NCOL(xb) == 1) colnames(xb) <- rnam
bstart <- start.values.randomX(y, X, family, formula=randomX, starting.val = randomX.start, Power = Power, link = link)
Br <- bstart$Br
sigmaB <- bstart$sigmaB
sigmaij <- rep(0,(ncol(xb)-1)*ncol(xb)/2)
# method <- "LA"
# xb <- as.matrix(model.matrix(randomX,data = X.new))
# xb <- as.matrix(xb[,!(colnames(xb) %in% c("(Intercept)"))])
# Br <- matrix(0, ncol(xb), p)
# sigmaB <- diag(ncol(xb))
} else {
xb <- Br <- matrix(0); sigmaB <- diag(1); sigmaij <- 0; Abb <- 0
}
num.X <- dim(X)[2]
num.T <- dim(TR)[2]
phi<-phis <- NULL
ZINBphi <- ZINBphis <- NULL
sigma <- 1
if(n.init > 1 && trace) cat("initial run ",n.i,"\n");
#### Calculate starting values
res <- start.values.gllvm.TMB(y = y, X = X1, TR = TR1, family = family, offset=offset, trial.size = trial.size, num.lv = num.lv, start.lvs = start.lvs, seed = seed[n.i],starting.val=starting.val,Power=Power,formula = formula, jitter.var=jitter.var, #!!!
yXT=yXT, row.eff = row.eff, TMB=TRUE, link=link, randomX=randomXb, beta0com = beta0com0, zeta.struc = zeta.struc, disp.group = disp.group, method=method, Ntrials = Ntrials)
if(is.null(res$Power) && family == "tweedie")res$Power=1.1
if(family=="tweedie"){
Power = res$Power
ePower = log((Power-1)/(1-(Power-1)))
if(ePower==0)ePower=ePower-0.01
}else{
ePower = 0
}
## Set initial values
if(is.null(start.params)){
beta0 <- res$params[,1]
# common env params or different env response for each spp
B <- NULL
if(!is.null(TR) && !is.null(X)) {
B <- c(res$B)[1:ncol(Xd)]
if(any(is.na(B))) B[is.na(B)] <- 0
}
row.params <- NULL;
if(row.eff!=FALSE){
row.params <- res$row.params
if(rstruc==0 && row.eff=="random") row.params <- row.params[1:nr]#rstruc
if(rstruc==1 && row.eff=="random") try(row.params <- (t(dr)%*%(row.params))/(dim(dr)[1]/dim(dr)[2]), silent = TRUE)#rstruc
# if(rstruc<2 && row.eff=="random") row.params <- row.params[1:nr] #rstruc
if (row.eff == "random") {
sigma <- sd(row.params);
}
}
vameans <- theta <- lambda <- NULL
if(num.lv > 0) {
sigma.lv <- res$sigma.lv
if(!is.null(randomXb) && family != "ordinal"){
Br <- res$Br
sigmaB <- (res$sigmaB)
if(length(sigmaB)>1) sigmaij <- rep(0,length(res$sigmaij))
if(randomX.start == "res" && !is.null(res$fitstart)) { ##!!!
res$sigmaij <- sigmaij <- res$fitstart$TMBfnpar[names(res$fitstart$TMBfnpar) == "sigmaij"]
}
}
if(start.struc=="LV"&quadratic!=FALSE){
lambda2 <- matrix(quad.start, ncol = num.lv, nrow = 1)
}else if(start.struc=="all"&quadratic!=FALSE){
lambda2 <- matrix(quad.start, ncol = num.lv, nrow = p)
}else if(quadratic==FALSE){
lambda2 <- 0
}
if(quadratic != FALSE){
res$params <- cbind(res$params, matrix(lambda2,nrow=p,ncol=num.lv))
}else{
res$params <- res$params
}
vameans <- res$index
theta <- as.matrix(res$params[,(ncol(res$params) - num.lv + 1):ncol(res$params)])#fts$coef$theta#
theta[upper.tri(theta)] <- 0
if(Lambda.struc == "unstructured") {
lambda <- array(NA,dim=c(n,num.lv,num.lv))
for(i in 1:n) { lambda[i,,] <- diag(rep(1,num.lv),num.lv) }
}
if(Lambda.struc == "diagonal") {
lambda <- matrix(1,n,num.lv)
}
zero.cons <- which(theta == 0)
if(num.lv.cor>0){ # In correlation model,
rho_lvc<- rep(0, num.lv.cor);
if((cstrucn[2] == 2) | (cstrucn[2] == 4)) {
if(is.null(rangeP)) {
rangeP = AD1 = (apply(as.matrix(dist),2,max)-apply(as.matrix(dist),2,min))/scalmax
} else {
AD1 = rep(rangeP, ncol(dist))[1:ncol(dist)]
}
scaledc<-log(AD1)
}
}
# if(family == "betaH"){ # Own loadings for beta distr in hurdle model
# thetaH <- t(theta%*%diag(sigma.lv, nrow = length(sigma.lv), ncol = length(sigma.lv)))
# }
if(n.init > 1 && !is.null(res$mu) && starting.val == "res" && family != "tweedie") {
if(family %in% c("ZIP","ZINB")) {
lastart <- FAstart(res$mu, family="poisson", y=y, num.lv = num.lv, jitter.var = jitter.var[1], disp.group=disp.group)
} else {
lastart <- FAstart(res$mu, family=family, y=y, num.lv = num.lv, phis = res$phi, jitter.var = jitter.var[1], zeta.struc=zeta.struc, zeta = res$zeta, disp.group=disp.group, link = link)
}
theta <- lastart$gamma#/lastart$gamma
vameans<-lastart$index#/max(lastart$index)
}
}else{
sigma.lv <- matrix(0)
}
} else{
if(all(dim(start.params$y)==dim(y)) && is.null(X)==is.null(start.params$X) && is.null(T)==is.null(start.params$TR) && row.eff == start.params$row.eff){
beta0 <- start.params$params$beta0
# common env params or different env response for each spp
B <- NULL
if(!is.null(TR) && !is.null(X)) {
B <- start.params$params$B;
}
b.lv <- matrix(0)
fourth <- inter <- NULL; if(!is.null(TR) ) inter <- start.params$params$fourth # let's treat this as a vector (vec(B'))'
vameans <- theta <- lambda <- NULL
row.params <- NULL
if(row.eff %in% c("fixed","random",TRUE)) {
if(row.eff == start.params$row.eff){
res$row.params <- row.params <- start.params$params$row.params
if(row.eff %in% c("random")) res$sigma <- sigma <- start.params$params$sigma
} else {
row.params <- res$row.params
}
}
sigma.lv <- 0
if(num.lv > 0) {
sigma.lv <- start.params$params$sigma.lv
theta <- (start.params$params$theta) ## LV coefficients
vameans <- matrix(start.params$lvs, ncol = num.lv);
lambda <- start.params$A
if(class(start.params)[2]=="gllvm.quadratic" && quadratic != FALSE){
lambda2 <- start.params$params$theta[,-c(1:start.params$num.lv),drop=F]
}else if(class(start.params)[1]=="gllvm" && quadratic != FALSE){
if(start.struc=="LV"|quadratic=="LV"){
lambda2 <- matrix(quad.start, ncol = num.lv, nrow = 1)
}else if(start.struc=="all"&quadratic=="all"){
lambda2 <- matrix(quad.start, ncol = num.lv, nrow = p)
}
}
}
if(num.lv.cor>0){ # sigmas are scale parameters # just diagonal values, not
if(is.numeric(start.params$params$rho.lv) & ((cstrucn[2] == 2) | (cstrucn[2] == 4))) {
# if(cstrucn[2] == 4) start.params$params$rho.lv <- start.params$params$rho.lv[,-ncol(start.params$params$rho.lv), drop=FALSE]
scaledc = colMeans(as.matrix(start.params$params$rho.lv));
if(length(scaledc) < ncol(dist) ) scaledc <- rep(scaledc, ncol(dist))[1:ncol(dist)]
}
}
if(family == "negative.binomial" && start.params$family == "negative.binomial" && !is.null(start.params$params$phi)) {res$phi<-start.params$params$phi}
} else { stop("Model which is set as starting parameters isn't the suitable you are trying to fit. Check that attributes y, X, TR and row.eff match to each other.");}
}
if (is.null(offset)) offset <- matrix(0, nrow = n, ncol = p)
### Starting values for dispersion/shape parameters
if(family == "negative.binomial") {
phis <- res$phi
if (any(phis > 10))
phis[phis > 50] <- 50
if (any(phis < 0.02))
phis[phis < 0.02] <- 0.02
res$phi <- phis
phis <- 1/phis
}
if (family == "ZIP" && starting.val=="res") {
phis <- res$phi
phis <- phis / (1 - phis)
}
if (family == "ZINB" && starting.val=="res") {
phis <- res$phi
phis <- phis / (1 - phis)
ZINBphis <- res$ZINB.phi
if (any(ZINBphis > 100))
ZINBphis[ZINBphis > 100] <- 100
if (any(ZINBphis < 0.01))
ZINBphis[ZINBphis < 0.01] <- 0.01
res$ZINB.phi <- ZINBphis
ZINBphis <- 1/ZINBphis
}
if(family == "tweedie") {
phis <- res$phi;
if(any(phis>10)) phis[phis>10]=10;
if(any(phis<0.10))phis[phis<0.10]=0.10;
phis= (phis)
}
if (family %in% c("ZIP","ZINB") && is.null(phis)) {
if(length(unique(disp.group))!=p){
phis <- (sapply(1:length(unique(disp.group)),function(x)mean(y[,which(disp.group==x)]==0))*0.98 + 0.01)[disp.group]
}else{
phis <- (colMeans(y == 0) * 0.98) + 0.01
}
phis <- phis / (1 - phis)
} # ZIP probability
if (family %in% c("gaussian", "gamma", "beta", "betaH", "orderedBeta")) {
phis <- res$phi
if (family %in% c("betaH", "orderedBeta")) { # & is.null(res$phi)
phis <- rep(5,p)
}
}
### Starting values for cut-off parameters
if(family=="ordinal"){
K = max(y00)-min(y00)
if(zeta.struc=="species"){
zeta <- c(t(res$zeta[,-1]))
zeta <- zeta[!is.na(zeta)]
}else{
zeta <- res$zeta[-1]
}
} else if(family=="orderedBeta") {
zeta <- rep(0,p)
# if(any(y==1))
zeta <- c(zeta,rep(3,p))
} else {
zeta = 0
}
### Jittering for row effs/random coefs
if(jitter.var.r>0){
if(row.eff == "random") row.params <- row.params + rnorm(n, 0, sd = sqrt(jitter.var.r));
if(!is.null(randomX)) Br <- Br + t(MASS::mvrnorm(p, rep(0, nrow(Br)),diag(nrow(Br))*jitter.var.r));
}
q <- num.lv
a <- c(beta0)
if(num.lv > 0) {
# diag(theta) <- log(diag(theta)) # !!!
theta <- theta[lower.tri(theta, diag = F)]
u <- vameans
}
if(!is.null(phis)) {
phi=(phis)
} else {
phi <- rep(1,p)+runif(p,0,0.001)
if (family %in% c("betaH", "orderedBeta")) {
phi <- rep(5,p)
}
res$phi <- phi
}
if(!is.null(ZINBphis)) {
ZINBphi <- ZINBphis
} else {
ZINBphi <- rep(1, p)+runif(p,0,0.001)
if(family=="ZINB") res$ZINBphi <- ZINBphi
}
if(!is.null(row.params)){ r0 <- row.params} else {r0 <- rep(0, n)}
if(row.eff == "random" && rstruc ==0){ nlvr<-num.lv+1 } else {nlvr=num.lv}
if(row.eff=="fixed"){xr <- matrix(1,1,p)} else {xr <- matrix(0,1,p)}
optr<-NULL
timeo<-NULL
se <- NULL
## map.list defines parameters which are not estimated in this model
map.list <- list()
if(is.list(setMap)) map.list <- setMap
# thetaH = matrix(0)
# map.list$thetaH = factor(NA)
# map.list$bH <- factor(NA) # not used
map.list$b_lv <- factor(NA) # not used
map.list$sigmab_lv = factor(NA)
map.list$Ab_lv = factor(NA)
if(family %in% c("poisson","binomial","ordinal","exponential")) {
map.list$lg_phi <- factor(rep(NA,p))
} else if(family %in% c("tweedie", "negative.binomial", "gamma", "gaussian", "beta", "betaH", "orderedBeta", "ZIP", "ZINB")){
map.list$lg_phi <- factor(disp.group)
if(family=="tweedie" && !is.null(Power))map.list$ePower = factor(NA)
if(family=="ZINB")map.list$lg_phiZINB <- factor(disp.group)
}
if(!(family %in% c("ordinal", "orderedBeta"))) map.list$zeta <- factor(NA)
if((family %in% c("orderedBeta"))){
if(zeta.struc=="species"){
zetamap = c(1:length(zeta))
if(!all(colSums(y==0)>0))
zetamap[1:p] <- 1
if(!all(colSums(y==1)>0))
zetamap[-(1:p)] <- max(zetamap[1:p])+1
map.list$zeta = factor( zetamap)
}else{
zetamap <- c(rep(1,p))
# if(any(y==1))
zetamap <- c(zetamap,rep(max(zetamap)+1,p))
map.list$zeta <- factor( c(zetamap) )
}
}
if(family != "tweedie"){map.list$ePower = factor(NA)}
if(family!="ZINB")map.list$lg_phiZINB <- factor(rep(NA,p))
if(row.eff==FALSE) map.list$r0 <- factor(rep(NA,n))
extra <- c(0,1,0)
# Common intercept
if(beta0com){
extra[2] <- 0
Xd<-cbind(1,Xd)
a <- a*0
B<-c(mean(a),B)
map.list$b<-factor(rep(NA,length(a)))
}
## Set up starting values for scale (and shape) parameters for correlated LVs
if(num.lv.cor>0 & cstrucn[2]>0){
rho_lvc<- matrix(rep(0, num.lv.cor))
if(cstrucn[2]==2){
if(is.null(rho.lv)) {
rho.lv=rep(0, num.lv.cor)
} else if(length(rho.lv)==num.lv.cor) {
rho.lv=c(log(rho.lv))
}
rho_lvc<- matrix(c(rep(scaledc, each=num.lv.cor)), num.lv.cor)
} else if(cstrucn[2]==4){
if(is.null(rho.lv)) {
rho.lv=rep(log(MaternKappa), each=num.lv.cor)
} else if(length(rho.lv)==num.lv.cor) {
rho.lv=c(log(rho.lv))
}
rho_lvc<- matrix(c(rep(scaledc, each=num.lv.cor), rho.lv), num.lv.cor)
# rho_lvc<- matrix(rho.lv,nrow = num.lv.cor)
}
# else {
# map.list$scaledc = factor(rep(NA, length(scaledc)))
# }
if(cstrucn[2] %in% c(2,4)){
iv<-rep(1:nrow(rho_lvc), ncol(rho_lvc));
if(!is.null(setMap$rho_lvc)){
if((length(setMap$rho_lvc)==length(rho_lvc)))
iv = (setMap$rho_lvc)
map.list$rho_lvc = factor(iv)
} else if(cstrucn[2]==2){ #cstruc=="corExp"
maprho = matrix(iv, nrow(rho_lvc), ncol(rho_lvc))
map.list$rho_lvc = factor(c(maprho))
} else if(cstrucn[2]==4){
# Fix matern smoothness by default
maprho = matrix(iv, nrow(rho_lvc), ncol(rho_lvc))
maprho[, ncol(maprho)] = NA
map.list$rho_lvc = factor(c(maprho))
}
}
res$rho.lv = rho_lvc
} else {
rho_lvc <- matrix(0)
map.list$rho_lvc = factor(NA)
}
### set starting values for variational distribution covariances
# Variational covariances for latent variables
if(num.lv > 0){
if(is.null(start.params) || start.params$method=="LA" || num.lv.cor>0){
if(Lambda.struc=="diagonal" || (Lambda.struc=="bdNN") || (Lambda.struc=="LR") || diag.iter>0){
Au <- log(rep(Lambda.start[1],num.lv*n))
} else{
Au <- c(log(rep(Lambda.start[1],num.lv*n)),rep(0,num.lv*(num.lv-1)/2*n)) #1/2, 1
}
} else{
Au <- NULL
for(d in 1:num.lv) {
if(start.params$Lambda.struc=="unstructured" || length(dim(start.params$A))==3){
Au <- c(Au,log(start.params$A[,d,d]))
} else {
Au <- c(Au,log(start.params$A[,d]))
}
}
if(Lambda.struc!="diagonal" && diag.iter==0){
Au <- c(Au,rep(0,num.lv*(num.lv-1)/2*n))
}
}
} else { Au <- 0}
# Variational covariances for structured/correlated LVs
if((num.lv.cor>0) & (method %in% c("VA", "EVA"))){
if(corWithin) {
if(diag.iter>0){
if(Astruc>=3){
Au <- c(Au[1:(n)])
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
}
} else {
if(Lambda.struc == "unstructured" && Astruc==1) {
Au <- c(Au[1:(n*num.lv.cor)], rep(0,sum(lower.tri(matrix(0,n,n)))*num.lv.cor) )
} else if(Lambda.struc == "bdNN" && Astruc==2){
Au <- c(Au[1:(n*num.lv.cor)], rep(0,nrow(NN)*num.lv.cor*nu) )
} else if(Astruc==3) {
Au <- c(Au[1:(n)], rep(0,sum(lower.tri(matrix(0,n,n)))) )
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
} else if(Astruc==4) {
Au <- c(Au[1:(n)], rep(0,nrow(NN)*nu) )
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
} else if(Astruc==5) {
Au <- c(Au[1:(n)])
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
}}
} else {
if(diag.iter>0){
if(Astruc<3){
Au <- c(Au[1:(nu*num.lv.cor)])
} else {
Au <- c(Au[1:(nu)])
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
}
} else {
if(Lambda.struc == "unstructured" && Astruc==1 & cstrucn[2]==0){
Au <- c(Au[1:(nu*num.lv.cor)], rep(0, nu*num.lv.cor*(num.lv.cor-1)/2))
} else if(Astruc==1){
Au <- c(Au[1:(nu*num.lv.cor)], rep(0, num.lv.cor*nu*(nu-1)/2) )
} else if(Astruc==2){
Au <- c(Au[1:(nu*num.lv.cor)], rep(0,nrow(NN)*num.lv.cor) )
} else if(Astruc==3){
Au <- c(Au[1:(nu)], rep(0,sum(lower.tri(matrix(0,nu,nu)))) )
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
} else if(Astruc==4){
Au <- c(Au[1:(nu)], rep(0,nrow(NN)) )
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
} else if(Astruc==5){
Au <- c(Au[1:(nu)] )
AQ<-diag(rep(log(Lambda.start[1]),num.lv.cor),num.lv.cor)
Au<-c(Au,AQ[lower.tri(AQ, diag = TRUE)])
} else if(Astruc==0){
Au <- c(Au[1:(nu*num.lv.cor)])
}
}
}
# if(corWithin) {
# if(Lambda.struc == "unstructured" && Astruc==1) {
# Au <- c(Au[1:(n*num.lv.cor)], rep(0,sum(lower.tri(matrix(0,n,n))[,1:2])*num.lv.cor) )
# } else if(Lambda.struc == "bdNN" && Astruc==2){
# Au <- c(Au[1:(n*num.lv.cor)], rep(0,nrow(NN)*num.lv.cor*nu) )
# # Au <- c(Au[1:(n*num.lv.cor)], rep(0,length(NN)*num.lv.cor) )
# }
# } else {
# u <- as.matrix(u[1:nu,])
# Au <- Au[1:(nu*num.lv.cor)]
# if(Lambda.struc == "unstructured" && Astruc==1 & cstrucn[2]==0 & diag.iter==0){
# Au <- c(Au[1:(nu*num.lv.cor)], rep(0, nu*num.lv.cor*(num.lv.cor-1)/2))
# } else {
# Au <- Au[1:(nu*num.lv.cor)]
# }
# }
}
# Variational covariances for random rows
if(row.eff == "random"){
if(rstruc ==1){
lg_Ar <- rep(log(Lambda.start[2]), nr)
} else {
lg_Ar <- rep(log(Lambda.start[2]), n)
}
if(rstruc == 0 && nlvr>num.lv && (num.lv.cor==0) & (Ar.struc!="diagonal")){
lg_Ar<-c(lg_Ar, rep(0, num.lv*n))
}
if(rstruc == 1 & (cstrucn[1] %in% c(1,2,3,4)) & Ar.struc!="diagonal"){
lg_Ar<-c(lg_Ar, rep(0, nr*(nr-1)/2))
}
if(rstruc == 2 & Ar.struc!="diagonal"){
lg_Ar<-c(lg_Ar, rep(0, nr*times*(times-1)/2))
}
} else {lg_Ar <- 0}
# Variational covariances for random slopes of envs
if(!is.null(randomX)){
if(length(Lambda.start)>2) {
a.var <- Lambda.start[3];
} else {a.var <- 0.5;}
if(randomX.start == "res" && !is.null(res$fitstart$Ab)){ # !!!! && !is.null(res$fitstart$Ab)
if(Ab.struct == "diagonal" || Ab.diag.iter>0){
Abb <- c(log(c(apply(res$fitstart$Ab,1, diag))))
} else {
Abb <- c(log(c(apply(res$fitstart$Ab,1, diag))), rep(0, ncol(xb) * (ncol(xb) - 1) / 2 * p))
}
res$Br <- Br
res$Ab <- c(apply(res$fitstart$Ab,1, diag))
} else{ #!!!
if(Ab.struct == "diagonal" || Ab.diag.iter>0){
Abb <- c(log(rep(a.var, ncol(xb) * p)))
} else {
Abb <- c(log(rep(a.var, ncol(xb) * p)), rep(0, ncol(xb) * (ncol(xb) - 1) / 2 * p))
}
} #!!!
} else { Abb <- 0 }
### Specify parameter.list, data.list and map.list
# For Laplace method, specify random parameters to randomp
randomp= NULL #c("u","r0,"Br")
randoml=c(0,0,0)
# latent vars
if(num.lv>0){
u<-cbind(u)
randomp <- c(randomp,"u")
} else {
u<-matrix(0)
theta = 0;
lambda2 <- 0
map.list$lambda = factor(NA)
map.list$lambda2 = factor(NA)
map.list$u = factor(NA)
map.list$Au = factor(NA)
map.list$sigmaLV = factor(NA)
}
if(num.lv.cor>0){
if(!corWithin) {
if(nrow(u) != nu){
u=as.matrix((t(dLV)%*%u/colSums(dLV))[1:nu,, drop=FALSE])
}
}
}
## Row effect settings
if(row.eff=="random"){
randoml[1] <- 1
randomp <- c(randomp,"r0")
if(dependent.row && (rstruc == 0))
sigma<-c(sigma[1], rep(0, num.lv))
if((rstruc %in% 1:2)) {
if(cstrucn[1] %in% c(1,3)) {
sigma = c(log(sigma[1]),0)
} else if(cstrucn[1] %in% c(2)){
sigma = c(log(sigma[1]),scaledc)
if(is.null(setMap$log_sigma)) map.list$log_sigma = factor( c(1, rep(2,length(sigma)-1) ) )
} else if(cstrucn[1] %in% c(4)){
sigma = c(log(sigma[1]),scaledc)
# Fix matern smoothness by default
if(is.null(setMap$log_sigma)) map.list$log_sigma = factor( c(1, rep(2,length(sigma)-1), NA) )
sigma = c(sigma,log(MaternKappa))
} else {
sigma = c(log(sigma[1]))
}
}
} else {
sigma=0
map.list$log_sigma <- factor(NA)
map.list$lg_Ar <- factor(NA)
# if(row.eff != "fixed") map.list$r0 <- factor(NA, length(r0))
}
# Random slopes
if(!is.null(randomX)){
randoml[2]=1
randomp <- c(randomp,"Br")
res$Br <- Br
res$sigmaB <- sigmaB
} else {
map.list$Br = factor(NA)
map.list$sigmaB = factor(NA)
map.list$sigmaij = factor(NA)
map.list$Abb = factor(NA)
}
if(quadratic==FALSE){
map.list$lambda2 <- factor(NA)
}
### family settings
if(family == "poisson") { familyn=0}
if(family == "negative.binomial") { familyn=1}
if(family == "binomial") {
familyn <- 2;
if(link=="probit") extra[1] <- 1
}
if(family == "gaussian") {familyn=3}
if(family == "gamma") {familyn=4}
if(family == "tweedie"){ familyn <- 5}
if(family == "ZIP"){ familyn <- 6;}
if(family == "ordinal") {familyn=7}
if(family == "exponential") {familyn=8}
if(family == "beta"){
familyn=9
if(link=="probit") extra[1] <- 1
}
if(family == "betaH"){
familyn = 10
if(link=="probit") extra[1]=1
# bH <- rbind(a,b)
# extra[2] <- 0
# Xd<-cbind(1,Xd)
# bH<-matrix(B)
# if(num.lv>0) {
# mapLH<-factor(1:length(thetaH))
# mapLH[lower.tri(thetaH)] <- NA
# map.list$thetaH <- factor(mapLH)
# } else {
# thetaH<- matrix(0);
# map.list$thetaH = factor(NA)
# }
}
if(family == "ZINB"){ familyn <- 11;}
if(family == "orderedBeta") {familyn=12}
## To improve starting values for quadratic model
if(starting.val!="zero" && start.struc != "LV" && quadratic == TRUE && num.lv>0 && method == "VA"){
map.list2 <- map.list
map.list2$r0 = factor(rep(NA, length(r0)))
map.list2$b = factor(rep(NA, length(rbind(a))))
map.list2$B = factor(rep(NA, length(B)))
map.list2$Br = factor(rep(NA,length(Br)))
map.list2$lambda = factor(rep(NA, length(theta)))
map.list2$sigmaLV = factor(rep(NA, length(theta)))
map.list2$u = factor(rep(NA, length(u)))
map.list2$lg_phi = factor(rep(NA, length(phi)))
map.list2$lg_phiZINB = factor(rep(NA, length(ZINBphi)))
map.list2$sigmaB = factor(rep(NA,length(sigmaB)))
map.list2$sigmaij = factor(rep(NA,length(sigmaij)))
map.list2$log_sigma = factor(rep(NA, length(sigma)))
map.list2$Au = factor(rep(NA, length(Au)))
map.list2$lg_Ar = factor(rep(NA, length(lg_Ar)))
map.list2$Abb = factor(rep(NA, length(Abb)))
map.list2$zeta = factor(rep(NA, length(zeta)))
parameter.list = list(r0=matrix(r0), b = rbind(a), b_lv = matrix(0), sigmab_lv = 0, Ab_lv = 0, B=matrix(B), Br=Br, lambda = theta, lambda2 = t(lambda2), sigmaLV = (sigma.lv), u = u, lg_phi=log(phi), sigmaB=log(sqrt(diag(sigmaB))), sigmaij=sigmaij, log_sigma=c(sigma), rho_lvc=rho_lvc, Au=Au, lg_Ar=lg_Ar, Abb=Abb, zeta=zeta, ePower = ePower, lg_phiZINB = log(ZINBphi)) #, scaledc=scaledc, bH=bH, thetaH = thetaH
objr <- TMB::MakeADFun(
data = list(y = y, x = Xd, x_lv = matrix(0), xr=xr, xb=xb, dr0 = dr, dLV = dLV, offset=offset, num_lv = num.lv, num_RR = 0, num_lv_c = 0, num_corlv=num.lv.cor, family=familyn, extra=extra, quadratic = 1, method=switch(method, VA=0, EVA=2), model=1, random=randoml, zetastruc = ifelse(zeta.struc=="species",1,0), rstruc = rstruc, times = times, cstruc=cstrucn, dc=dist, Astruc=Astruc, NN = NN, Ntrials = Ntrials), silent=!trace,
parameters = parameter.list, map = map.list2,
inner.control=list(mgcmax = 1e+200),
DLL = "gllvm")
if(optimizer=="nlminb") {
timeo <- system.time(optr <- try(nlminb(objr$par, objr$fn, objr$gr,control = list(rel.tol=reltol,iter.max=max.iter,eval.max=maxit)),silent = TRUE))
}
if(optimizer=="optim") {
if(optim.method != "BFGS")
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = optim.method,control = list(maxit=maxit),hessian = FALSE),silent = TRUE))
else
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = "BFGS",control = list(reltol=reltol,maxit=maxit),hessian = FALSE),silent = TRUE))
}
lambda2 <- matrix(optr$par, byrow = T, ncol = num.lv, nrow = p)
if(inherits(optr,"try-error")) warning(optr[1]);
}
#### Call makeADFun
if( (method %in% c("VA", "EVA")) && (num.lv>0 || row.eff=="random" || !is.null(randomX) || (family =="orderedBeta")) ){
parameter.list = list(r0=matrix(r0), b = rbind(a), b_lv = matrix(0), sigmab_lv = 0, Ab_lv = 0, B=matrix(B), Br=Br, lambda = theta, lambda2 = t(lambda2), sigmaLV = (sigma.lv), u = u, lg_phi=log(phi), sigmaB=log(sqrt(diag(sigmaB))), sigmaij=sigmaij, log_sigma=c(sigma), rho_lvc=rho_lvc, Au=Au, lg_Ar=lg_Ar, Abb=Abb, zeta=zeta, ePower = ePower, lg_phiZINB = log(ZINBphi)) #, scaledc=scaledc, bH=bH, thetaH = thetaH
objr <- TMB::MakeADFun(
data = list(y = y, x = Xd, x_lv = matrix(0), xr=xr, xb=xb, dr0 = dr, dLV = dLV, offset=offset, num_lv = num.lv, num_RR = 0, num_lv_c = 0, num_corlv=num.lv.cor, quadratic = ifelse(quadratic!=FALSE,1,0), family=familyn, extra=extra, method=switch(method, VA=0, EVA=2), model=1, random=randoml, zetastruc = ifelse(zeta.struc=="species",1,0), rstruc = rstruc, times = times, cstruc=cstrucn, dc=dist, Astruc=Astruc, NN = NN, Ntrials = Ntrials), silent=!trace,
parameters = parameter.list, map = map.list,
inner.control=list(mgcmax = 1e+200),
DLL = "gllvm")
} else {
Au=0; Abb=0; lg_Ar=0;
map.list$Au <- map.list$Abb <- map.list$lg_Ar <- factor(NA)
parameter.list = list(r0=matrix(r0), b = rbind(a), b_lv = matrix(0), sigmab_lv = 0, Ab_lv = 0, B=matrix(B), Br=Br, lambda = theta, lambda2 = t(lambda2), sigmaLV = (sigma.lv), u = u, lg_phi=log(phi), sigmaB=log(sqrt(diag(sigmaB))), sigmaij=sigmaij, log_sigma=c(sigma), rho_lvc=rho_lvc, Au=Au, lg_Ar=lg_Ar, Abb=Abb, zeta=zeta, ePower = ePower, lg_phiZINB = log(ZINBphi)) #, scaledc=scaledc, thetaH = thetaH, bH=bH
data.list <- list(y = y, x = Xd, x_lv = matrix(0), xr=xr, xb=xb, dr0 = dr, dLV = dLV, offset=offset, num_lv = num.lv, num_RR = 0, num_lv_c = 0, num_corlv=num.lv.cor, quadratic = 0, family=familyn,extra=extra,method=1,model=1,random=randoml, zetastruc = ifelse(zeta.struc=="species",1,0), rstruc = rstruc, times = times, cstruc=cstrucn, dc=dist, Astruc=Astruc, NN = NN, Ntrials = Ntrials)
if(family == "ordinal"){
data.list$method = 0
}
objr <- TMB::MakeADFun(
data = data.list, silent=!trace,
parameters = parameter.list, map = map.list,
inner.control=list(mgcmax = 1e+200,tol10=0.01),
random = randomp, DLL = "gllvm")
}
#### Fit model
if(optimizer=="nlminb") {
timeo <- system.time(optr <- try(nlminb(objr$par, objr$fn, objr$gr,control = list(rel.tol=reltol,iter.max=max.iter,eval.max=maxit)),silent = TRUE))
}
if(optimizer=="optim") {
if(optim.method != "BFGS") # Due the memory issues, "BFGS" should not be used for Tweedie
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = optim.method,control = list(maxit=maxit),hessian = FALSE),silent = TRUE))
else
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = "BFGS",control = list(reltol=reltol,maxit=maxit),hessian = FALSE),silent = TRUE))
}
if(inherits(optr,"try-error")) warning(optr[1]);
### Now diag.iter, improves the model fit sometimes
if(diag.iter>0 && !(Lambda.struc %in% c("diagonal", "diagU")) && (method %in% c("VA", "EVA")) && (num.lv>1 || !is.null(randomX)) && !inherits(optr,"try-error")){
objr1 <- objr
optr1 <- optr
param1 <- optr$par
nam <- names(param1)
if(length(param1[nam=="r0"])>0){ r1 <- matrix(param1[nam=="r0"])} else {r1 <- matrix(r0)}
if(length(param1[nam=="b"])>0){ b1 <- rbind(param1[nam=="b"])} else {b1 <- rbind(rep(0,p))}
B1 <- matrix(param1[nam=="B"])
if(!is.null(randomX)) {
Br1 <- matrix(param1[nam=="Br"], ncol(xb), p) #!!!
sigmaB1 <- param1[nam=="sigmaB"]
sigmaij1 <- param1[nam=="sigmaij"]*0
Abb <- param1[nam=="Abb"]
if(Ab.diag.iter>0 && Ab.struct == "unstructured")
Abb <- c(Abb, rep(0,ncol(xb)*(ncol(xb)-1)/2*p))
} else {
Br1 <- Br
sigmaB1 <- sigmaB
sigmaij1 <- sigmaij
}
if(num.lv>0) {
lambda1 <- param1[nam=="lambda"];
u1 <- matrix(param1[nam=="u"], nrow(u), num.lv)
Au<- c(pmax(param1[nam=="Au"],rep(log(1e-6), num.lv*nrow(u1))), rep(0,num.lv*(num.lv-1)/2*nrow(u1)))
if (quadratic=="LV" | quadratic == T && start.struc == "LV"){
lambda2 <- matrix(param1[nam == "lambda2"], byrow = T, ncol = num.lv, nrow = 1)#In this scenario we have estimated two quadratic coefficients before
}else if(quadratic == T){
lambda2 <- matrix(param1[nam == "lambda2"], byrow = T, ncol = num.lv, nrow = p)
}
} else {u1 <- u}
if((num.lv)>0){sigma.lv1 <- param1[nam=="sigmaLV"]}else{sigma.lv1<-0}
if(num.lv.cor>0){
Au1<- c(param1[nam=="Au"])
if(corWithin) {
if(Lambda.struc == "unstructured" && Astruc==1) {
Au1 <- c(pmax(Au1[1:(n*num.lv.cor)],log(1e-2)), rep(1e-3,sum(lower.tri(matrix(0,n,n)))*num.lv.cor) )
} else if(Lambda.struc == "bdNN" && Astruc==2){
Au1 <- c(pmax(Au1[1:(n*num.lv.cor)],log(1e-2)), rep(1e-3,nrow(NN)*num.lv.cor*nu) )
} else if(Astruc==3) {
Au1 <- c(log(exp(Au1[1:(n)])+1e-2), rep(1e-3,sum(lower.tri(matrix(0,n,n)))), Au1[-(1:n)])
} else if(Astruc==4) {
Au1 <- c(log(exp(Au1[1:(n)])+1e-2), rep(1e-3,nrow(NN)*nu), Au1[-(1:n)])
}
} else {
if(Lambda.struc == "unstructured" && Astruc==1 & cstrucn[2]==0){
Au1 <- c(pmax(Au1[1:(nu*num.lv.cor)],log(1e-2)), rep(1e-3, nu*num.lv.cor*(num.lv.cor-1)/2))
} else if(Astruc==1){
Au1 <- c(pmax(Au1[1:(nu*num.lv.cor)],log(1e-2)), rep(1e-3, num.lv.cor*nu*(nu-1)/2) )
} else if(Astruc==2){
Au1 <- c(pmax(Au1[1:(nu*num.lv.cor)],log(1e-2)), rep(1e-3,nrow(NN)*num.lv.cor) )
} else if(Astruc==3){
Au1 <- c(log(exp(Au1[1:(nu)])+1e-2), rep(1e-3,sum(lower.tri(matrix(0,nu,nu)))), Au1[-(1:nu)])
} else if(Astruc==4){
Au1 <- c(log(exp(Au1[1:(nu)])+1e-2), rep(1e-3,nrow(NN)), Au1[-(1:nu)])
}
}
if(cstrucn[2]>0){
if(cstrucn[2] %in% c(2,4)){ #cstruc=="corExp" || cstruc=="corMatern"
if(num.lv.cor>0){
rho_lvc <- matrix((param1[nam=="rho_lvc"])[map.list$rho_lvc],nrow(rho_lvc),ncol(rho_lvc));
rho_lvc[is.na(rho_lvc)]=0
} #rho_lvc[-1]<- param1[nam=="rho_lvc"]
} else {
rho_lvc[1:length(rho_lvc)]<- param1[nam=="rho_lvc"]
}
}
} else if((num.lv)>0) {
Au1<- c(pmax(param1[nam=="Au"],rep(log(1e-6), (num.lv)*nrow(u1))), rep(0,(num.lv)*((num.lv)-1)/2*nrow(u1)))
} else {Au1<-Au}
if(num.lv==0) {lambda1 <- 0; }
if(family %in% c("poisson","binomial","ordinal","exponential", "betaH", "orderedBeta")){ lg_phi1 <- log(phi)} else {lg_phi1 <- param1[nam=="lg_phi"][disp.group]} #cat(range(exp(param1[nam=="lg_phi"])),"\n")
if(family=="ZINB"){lg_phiZINB1 <- param1[nam=="lg_phiZINB"][disp.group]}else{lg_phiZINB1<-log(ZINBphi)}
if(family=="tweedie" && is.null(Power))ePower = param1[nam == "ePower"]
if(row.eff == "random"){
log_sigma1 <- log(exp(param1[nam=="log_sigma"])+1e-3)
if(!is.null(map.list$log_sigma)) log_sigma1 = log_sigma1[map.list$log_sigma]
lg_Ar<- log(exp(param1[nam=="lg_Ar"])+1e-3)
} else {log_sigma1 = 0}
if(family %in% c("ordinal")){
zeta <- param1[nam=="zeta"]
} else if(family %in% c("orderedBeta")){
zeta <- c(rep(0,p),rep(param1[nam=="zeta"] ,p)[1:p])
} else {
zeta <- 0
}
parameter.list = list(r0=r1, b = b1, b_lv = matrix(0), sigmab_lv = 0, Ab_lv = 0, B=B1, Br=Br1, lambda = lambda1, lambda2 = t(lambda2), sigmaLV = sigma.lv1, u = u1, lg_phi=lg_phi1, sigmaB=sigmaB1, sigmaij=sigmaij1, log_sigma=log_sigma1, rho_lvc=rho_lvc, Au=Au1, lg_Ar=lg_Ar, Abb=Abb, zeta=zeta, ePower = ePower, lg_phiZINB = lg_phiZINB1) #, scaledc=scaledc, thetaH = thetaH, bH=bH
data.list = list(y = y, x = Xd, x_lv = matrix(0), xr=xr, xb=xb, dr0 = dr, dLV = dLV, offset=offset, num_lv = num.lv, num_RR = 0, num_lv_c = 0, num_corlv=num.lv.cor, quadratic = ifelse(quadratic!=FALSE&num.lv>0,1,0), family=familyn, extra=extra, method=switch(method, VA=0, EVA=2), model=1, random=randoml, zetastruc = ifelse(zeta.struc=="species",1,0), rstruc = rstruc, times = times, cstruc=cstrucn, dc=dist, Astruc=Astruc, NN = NN, Ntrials = Ntrials)
objr <- TMB::MakeADFun(
data = data.list, silent=!trace,
parameters = parameter.list, map = map.list,
inner.control=list(mgcmax = 1e+200),
DLL = "gllvm")
if(optimizer=="nlminb") {
timeo <- system.time(optr <- try(nlminb(objr$par, objr$fn, objr$gr,control = list(rel.tol=reltol,iter.max=max.iter,eval.max=maxit)),silent = TRUE))
}
if(optimizer=="optim") {
if(optim.method != "BFGS")
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = optim.method,control = list(maxit=maxit),hessian = FALSE),silent = TRUE))
else
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = "BFGS",control = list(reltol=reltol,maxit=maxit),hessian = FALSE),silent = TRUE))
}
if(inherits(optr, "try-error")){optr <- optr1; objr <- objr1; Lambda.struc <- "diagonal"}
}
if(!inherits(optr,"try-error") && start.struc=="LV" && quadratic == TRUE && method == "VA"){
objr1 <- objr
optr1 <- optr
param1 <- optr$par
nam <- names(param1)
if(length(param1[nam=="r0"])>0){ r1 <- matrix(param1[nam=="r0"])} else {r1 <- matrix(r0)}
b1 <- rbind(param1[nam=="b"])
B1 <- matrix(param1[nam=="B"])
sigma.lv1 <- param1[nam=="sigmaLV"]
if(!is.null(randomX)) {
Br1 <- matrix(param1[nam=="Br"], ncol(xb), p) #!!!
sigmaB1 <- param1[nam=="sigmaB"]
sigmaij1 <- param1[nam=="sigmaij"]*0
Abb <- param1[nam=="Abb"]
if(Ab.diag.iter>0 && Ab.struct == "unstructured")
Abb <- c(Abb, rep(0,ncol(xb)*(ncol(xb)-1)/2*p))
} else {
Br1 <- Br
sigmaB1 <- sigmaB
sigmaij1 <- sigmaij
}
lambda1 <- param1[nam=="lambda"];
u1 <- matrix(param1[nam=="u"],n,num.lv)
Au<- param1[nam=="Au"]
lambda2 <- abs(matrix(param1[nam == "lambda2"], byrow = T, ncol = num.lv, nrow = p))
if(family %in% c("poisson","binomial","ordinal","exponential")){ lg_phi1 <- log(phi)} else {lg_phi1 <- param1[nam=="lg_phi"][disp.group]}
if(family=="ZINB"){lg_phiZINB1 <- param1[nam=="lg_ZINBphi"][disp.group]}else{lg_phiZINB1<-log(ZINBphi)}
if(row.eff == "random"){
log_sigma1 <- param1[nam=="log_sigma"]
if(!is.null(map.list$log_sigma)) log_sigma1 = log_sigma1[map.list$log_sigma]
lg_Ar<- param1[nam=="lg_Ar"]
} else {log_sigma1 = 0}
if(family == "ordinal"){ zeta <- param1[nam=="zeta"] } else { zeta <- 0 }
parameter.list = list(r0=r1, b = b1, b_lv = matrix(0), sigmab_lv = 0, Ab_lv = 0, B=B1, Br=Br1, lambda = lambda1, lambda2 = t(lambda2), sigmaLV = sigma.lv1, u = u1, lg_phi=lg_phi1, sigmaB=sigmaB1, sigmaij=sigmaij1, log_sigma=log_sigma1, rho_lvc=rho_lvc, Au=Au, lg_Ar=lg_Ar, Abb=Abb, zeta=zeta, ePower = ePower, lg_phiZINB = lg_phiZINB1) #, scaledc=scaledc, thetaH = thetaH, bH=bH
data.list = list(y = y, x = Xd, x_lv = matrix(0), xr=xr, xb=xb, dr0 = dr, dLV = dLV, offset=offset, num_lv = num.lv, num_RR = 0, num_lv_c = 0, quadratic = 1, family=familyn, extra=extra, method=switch(method, VA=0, EVA=2), model=1, random=randoml, zetastruc = ifelse(zeta.struc=="species",1,0), rstruc = rstruc, times = times, cstruc=cstrucn, dc=dist, Astruc=Astruc, NN = NN, Ntrials = Ntrials)
objr <- TMB::MakeADFun(
data = data.list, silent=!trace,
parameters = parameter.list, map = map.list,
inner.control=list(mgcmax = 1e+200),
DLL = "gllvm")
if(optimizer=="nlminb") {
timeo <- system.time(optr <- try(nlminb(objr$par, objr$fn, objr$gr,control = list(rel.tol=reltol,iter.max=max.iter,eval.max=maxit)),silent = TRUE))
}
if(optimizer=="optim") {
if(optim.method != "BFGS")
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = optim.method, control = list(maxit=maxit),hessian = FALSE),silent = TRUE))
else
timeo <- system.time(optr <- try(optim(objr$par, objr$fn, objr$gr,method = "BFGS", control = list(reltol=reltol,maxit=maxit),hessian = FALSE),silent = TRUE))
}
#quick check to see if something actually happened
flag <- 1
if(all(round(lambda2,0)==round(matrix(abs(optr$par[names(optr$par)=="lambda2"]),byrow=T,ncol=num.lv,nrow=p),0))){
flag <- 0
warning("Full quadratic model did not properly converge or all quadratic coefficients are close to zero. Try changing 'start.struc' in 'control.start'. /n")
}
if(inherits(optr, "try-error") || flag == 0){optr <- optr1; objr <- objr1; quadratic <- "LV";}
}
#### Extract estimated values
param <- objr$env$last.par.best
if(family %in% c("negative.binomial", "tweedie", "gaussian", "gamma", "beta", "betaH", "orderedBeta")) {
phis=exp(param[names(param)=="lg_phi"])[disp.group]
if(family=="tweedie" && is.null(Power)){
Power = exp(param[names(param)=="ePower"])/(1+exp(param[names(param)=="ePower"]))+1
names(Power) = "Power"
}
}
if(family %in% c("ZIP","ZINB")) {
if(family == "ZINB")ZINBphis <- exp(param[names(param)=="lg_phiZINB"])[disp.group]
lp0 <- param[names(param)=="lg_phi"][disp.group]; out$lp0=lp0
phis <- exp(lp0)/(1+exp(lp0));#log(phis); #
}
if(family == "ordinal"){
zetas <- param[names(param)=="zeta"]
if(zeta.struc=="species"){
zetanew <- matrix(NA,nrow=p,ncol=K)
idx<-0
for(j in 1:ncol(y)){
k<-max(y[,j])-2
if(k>0){
for(l in 1:k){
zetanew[j,l+1]<-zetas[idx+l]
}
}
idx<-idx+k
}
zetanew[,1] <- 0
row.names(zetanew) <- colnames(y00); colnames(zetanew) <- paste(min(y):(max(y00)-1),"|",(min(y00)+1):max(y00),sep="")
}else{
zetanew <- c(0,zetas)
names(zetanew) <- paste(min(y00):(max(y00)-1),"|",(min(y00)+1):max(y00),sep="")
}
zetas<-zetanew
out$y<-y00
}
if(family == "orderedBeta") {
zetas <- matrix((param[names(param)=="zeta"])[map.list$zeta],p,2)
colnames(zetas) = c("cutoff0","cutoff1")
}
bi<-names(param)=="b"
Bi<-names(param)=="B"
li<-names(param)=="lambda"
si <- names(param)=="sigmaLV"
li2 <- names(param)=="lambda2"
ui<-names(param)=="u"
if(num.lv.cor > 0){ # Correlated latent variables
if(corWithin){
lvs<-(matrix(param[ui],n,num.lv.cor))
} else {
lvs = matrix(param[ui],nu,num.lv.cor)
rownames(lvs) =colnames(dLV)
# lvs = dLV%*%matrix(param[ui],nu,num.lv.cor)
}
sigma.lv <- abs(param[si])
theta <- matrix(0,p,num.lv.cor)
if(num.lv.cor>1){
diag(theta)<- 1 #sigma.lv
} else if(num.lv.cor==1) {
theta[1,1]<- 1 #sigma.lv[1]
}
if(p>1) {
theta[lower.tri(theta[,1:num.lv.cor,drop=F],diag=FALSE)] <- param[li];
} else {
theta <- as.matrix(1)
}
rho_lvc = param[names(param)=="rho_lvc"]
if((cstrucn[2] %in% c(1,3))) rho.lv<- param[names(param)=="rho_lvc"] / sqrt(1.0 + param[names(param)=="rho_lvc"]^2);
if((cstrucn[2] %in% c(2,4))){
rho.lv<- exp(param[names(param)=="rho_lvc"]);
# scaledc<- exp(param[names(param)=="scaledc"]);
}
} else if(num.lv > 0){
sigma.lv <- abs(param[si])
lvs <- (matrix(param[ui],n,num.lv))
theta <- matrix(0,p,num.lv)
diag(theta)<-1
if(p>1) {
theta[lower.tri(theta,diag=F)] <- param[li];
if(quadratic!=FALSE){
theta<-cbind(theta,matrix(-abs(param[li2]),ncol=num.lv,nrow=p,byrow=T))
}
} else {theta <- c(as.matrix(1),-abs(param[li2]))}
# diag(theta) <- exp(diag(theta))#!!!
}
if(row.eff!=FALSE) {
ri = names(param)=="r0"
row.params = param[ri]
if(row.eff=="random"){
sigma = exp(param[names(param)=="log_sigma"])[1]
if((rstruc ==2 | (rstruc == 1)) & (cstrucn[1] %in% c(1,3))) rho = param[names(param)=="log_sigma"][2] / sqrt(1.0 + param[names(param)=="log_sigma"][2]^2);
if((rstruc ==2 | (rstruc == 1)) & (cstrucn[1] %in% c(2,4))) {
rho = exp(param[names(param)=="log_sigma"][-1]);
}
if(num.lv>0 && dependent.row && rstruc==0) sigma = c(sigma, (param[names(param)=="log_sigma"])[-1])
}
}
if(!is.null(randomX)){
Bri <- names(param)=="Br"
Br <- matrix(param[Bri],ncol(xb),p)
Sri <- names(param)=="sigmaB"
L <- diag(ncol(xb))
if(ncol(xb)>1){
sigmaB <- diag(exp(param[Sri]), length(param[Sri]))
Srij <- names(param)=="sigmaij"
Sr <- param[Srij]
L[upper.tri(L)] <- Sr
D <- diag(diag(t(L)%*%L))
} else{
D <- 1
sigmaB <- (exp(param[Sri]))
}
sigmaB_ <- solve(sqrt(D))%*%(t(L)%*%L)%*%solve(sqrt(D))
sigmaB <- sigmaB%*%sigmaB_%*%t(sigmaB)
}
beta0 <- param[bi]
B <- param[Bi]
# if(family %in% "betaH"){
# bHi <- names(param)=="bH"
# betaH <- (param[bHi])
# if(num.lv>0) {
# thetaH[!is.na(map.list$thetaH)] <- param[names(param)=="thetaH"]
# }
# }
cn<-colnames(Xd)
if(beta0com){
beta0=B[1]
B = B[-1]
cn<-colnames(Xd)
Xd<-as.matrix(Xd[,-1])
colnames(Xd)<-cn[-1]
}
new.loglik<-objr$env$value.best[1]
#### Check if model fit succeeded/improved on this iteration n.i
# Gradient check with n.i >2 so we don't get poorly converged models - relatively relaxed tolerance
if(n.i>1){
if(!is.null(objrFinal)){
gr1 <- objrFinal$gr()
gr1 <- as.matrix(gr1/length(gr1))
norm.gr1 <- norm(gr1)
}else{
gr1 <- NaN
norm.gr1 <- NaN
}
gr2 <- objr$gr()
gr2 <- as.matrix(gr2/length(gr2))
norm.gr2 <- norm(gr2)
n.i.i <- n.i.i +1
grad.test1 <- all.equal(norm.gr1, norm.gr2, tolerance = 1, scale = 1)#check if gradients are similar when accepting on log-likelihood
grad.test2 <- all.equal(norm.gr1, norm.gr2, tolerance = .1, scale = 1)#check if gradient are (sufficiently) different from each other, when accepting on gradient. Slightly more strict for norm(gr2)<norm(gr1)
}else{
n.i.i <- 0
}
if(n.i.i>n.init.max){
n.init <- n.i
warning("n.init.max reached after ", n.i, " iterations.")
}
if((n.i==1 || ((is.nan(norm.gr1) && !is.nan(norm.gr2)) || !is.nan(norm.gr2) && ((isTRUE(grad.test1) && out$logL > (new.loglik)) || (!isTRUE(grad.test2) && norm.gr2<norm.gr1)))) && is.finite(new.loglik) && !inherits(optr, "try-error")){
objrFinal<-objr1 <- objr; optrFinal<-optr1 <- optr;n.i.i<-0;
out$logL <- new.loglik
if(num.lv > 0) {
out$lvs <- lvs
out$params$theta <- theta
if(num.lv>0)out$params$sigma.lv <- sigma.lv
if(nrow(out$lvs)==nrow(out$y)) rownames(out$lvs) <- rownames(out$y);
rownames(out$params$theta) <- colnames(out$y)
if(quadratic==FALSE)colnames(out$params$theta) <- colnames(out$lvs) <- paste("LV", 1:num.lv, sep="");
if(quadratic!=FALSE){
colnames(out$lvs) <- paste("LV", 1:num.lv, sep="");
colnames(out$params$theta)<- c(paste("LV", 1:num.lv, sep=""),paste("LV", 1:num.lv, "^2",sep=""));
}
names(out$params$sigma.lv) <- paste("LV", 1:num.lv, sep="");
}
if(!beta0com) names(beta0) <- colnames(out$y);
if(beta0com) names(beta0) <- "Community intercept";
out$params$beta0 <- beta0;
out$params$B <- B; names(out$params$B)=colnames(Xd)
# row params
if(row.eff!=FALSE) {
if(row.eff=="random"){
out$params$sigma <- sigma;
names(out$params$sigma) <- "sigma"
if((rstruc ==2 | (rstruc == 1)) & (cstrucn[1] %in% c(1,2,3,4))){
out$params$rho <- rho
}
if(num.lv>0 && dependent.row) names(out$params$sigma) <- paste("sigma",c("",1:num.lv), sep = "")
}
out$params$row.params <- row.params;
if(length(row.params) == n) names(out$params$row.params) <- rownames(out$y)
if((length(row.params) == ncol(dr)) && (rstruc==1)) try(names(out$params$row.params) <- colnames(dr), silent = TRUE)
}
# LV correlation matrix parameters
if(num.lv.cor>0 & cstrucn[2]>0){
out$params$rho.lv <- rho.lv;
if(cstrucn[2] %in% c(2,4)){
names(out$params$rho.lv) <- paste("rho.lv",1:length(out$params$rho.lv), sep = "") #[!is.na(map.list$sigma_lvc)]
} else {
names(out$params$rho.lv) <- paste("rho.lv",1:num.lv.cor, sep = "")
}
}
# if(family %in% "betaH"){
# out$params$betaH <- betaH;
# names(out$params$betaH)=cn; #colnames(Xd)
# if(num.lv>0) {
# out$params$thetaH <- thetaH
# }
# }
# Dispersion parameters
if(family =="negative.binomial") {
out$params$inv.phi <- phis;
out$params$phi <- 1/phis;
names(out$params$phi) <- colnames(y);
if(!is.null(names(disp.group))){
try(names(out$params$phi) <- names(disp.group),silent=T)
}
names(out$params$inv.phi) <- names(out$params$phi)
}
if(family %in% c("gaussian", "tweedie", "gamma","beta", "betaH", "orderedBeta")) {
out$params$phi <- phis;
names(out$params$phi) <- colnames(y);
if(!is.null(names(disp.group))){
try(names(out$params$phi) <- names(disp.group),silent=T)
}
}
if(family %in% c("ZIP","ZINB")) {
out$params$phi <- phis;
names(out$params$phi) <- colnames(y);
if(!is.null(names(disp.group))){
try(names(out$params$phi) <- names(disp.group),silent=T)
}
if(family =="ZINB") {
out$params$ZINB.inv.phi <- ZINBphis;
out$params$ZINB.phi <- 1/ZINBphis;
names(out$params$ZINB.phi) <- colnames(y);
if(!is.null(names(disp.group))){
try(names(out$params$ZINB.phi) <- names(disp.group),silent=T)
}
names(out$params$ZINB.inv.phi) <- names(out$params$ZINB.phi)
}
}
if (family %in% c("ordinal", "orderedBeta")) {
out$params$zeta <- zetas
}
if(!is.null(randomX)){
out$params$Br <- Br
out$params$sigmaB <- sigmaB
out$corr <- sigmaB_ #!!!!
rownames(out$params$Br) <- rownames(out$params$sigmaB) <- colnames(out$params$sigmaB) <- colnames(xb)
}
if(family %in% c("binomial", "beta")) out$link <- link;
out$row.eff <- row.eff
out$time <- timeo
out$start <- res
if(family == "tweedie")out$Power = Power
pars <- optr$par
## Collect VA covariances
if((method %in% c("VA", "EVA"))){
param <- objr$env$last.par.best
if(num.lv.cor>0 && !corWithin){
Au <- param[names(param)=="Au"]
AQ <- NULL
if(cstrucn[2]==0){
A <- array(0, dim=c(nu, num.lv.cor, num.lv.cor))
for (d in 1:(num.lv.cor)){
for(i in 1:nu){
A[i,d,d] <- exp(Au[(d-1)*nu+i]);
}
}
if(Astruc>0 & (length(Au)>((num.lv.cor)*nu))){ # var cov Unstructured
k=0;
for (d in 1:num.lv.cor){
r=d+1
while (r <= num.lv.cor){
for(i in 1:nu){
A[i,r,d]=Au[nu*num.lv.cor+k*nu+i];
}
k=k+1; r=r+1
}}
}
for(i in 1:nu){
A[i,,] <- A[i,,]%*%t(A[i,,])
}
} else {
# A <- array(0, dim=c(nu, nu, num.lv.cor))
if(Astruc<3){
nMax<- num.lv.cor
} else {
nMax<- 1
}
A <- array(0, dim=c(nu, nu, nMax))
if(Astruc<3) {
Au <- param[names(param)=="Au"]
# Au <- exp(param[names(param)=="Au"])^2
for (d in 1:(num.lv.cor)){
A[,,d] <- diag(exp(Au[(d-1)*nu+1:nu]),nu,nu)
k=0;
if((Astruc==1) & (length(Au) > nu*num.lv.cor) ){ # unstructured variational covariance
for (i in 1:nu){
for (r in (i+1):nu){
A[,,d]=Au[nu*num.lv.cor+k*num.lv.cor+d];
k=k+1;
}
}
} else if((Astruc==2) & (length(Au) > nu*num.lv.cor)) { # bdNN variational covariance
arank = nrow(NN);
for (r in 1:arank){
A[NN[r,1],NN[r,2],d]=Au[nu*num.lv.cor+k*num.lv.cor+d];
k=k+1;
}
}
A[,,d]=A[,,d]%*%t(A[,,d])
}
} else {
# Alvm <- array(objr$report()$Alvm, dim=c(nu, nu, nMax))
for (d in 1:nMax) {
if(Astruc %in% c(3,4)){
A[,,d] <- objr$report()$Alvm
# A[,,d] <- Alvm #%*%t(Alvm)
}
# else {
# A[,,d] <- Alvm[,,d]%*%t(Alvm[,,d])
# }
}
}
if(Astruc %in% c(3,4)){
AQ <- matrix(0,num.lv.cor,num.lv.cor)
AQ <- objr$report()$AQ
# AQ<-AQ%*%t(AQ)
}
# for(d in 1:nMax){ #num.lv.cor
# A[,,d] <- A[,,d]%*%t(A[,,d])
# }
}
out$A <- A
out$AQ <- AQ
} else if(num.lv.cor>0 && corWithin){
Au <- param[names(param)=="Au"]
if(Astruc<3){
nMax<- num.lv.cor
} else {
nMax<- 1
}
A <- array(0, dim=c(times*nu, times*nu, nMax))
Alvm <- objr$report()$Alvm
AQ <- NULL
for (q in 1:nMax) {
if(Astruc %in% c(3,4)){
A[,,q] <- Alvm%*%t(Alvm)
} else {
A[,,q] <- Alvm[,,q]%*%t(Alvm[,,q])
}
}
if(Astruc %in% c(3,4)){
AQ <- matrix(0,num.lv.cor,num.lv.cor)
AQ <- objr$report()$AQ
AQ<-AQ%*%t(AQ)
}
out$AQ <- AQ
out$A <- A
} else if(nlvr>0){
param <- objr$env$last.par.best
A <- array(0, dim=c(n, nlvr, nlvr))
if(nlvr>num.lv){
lg_Ar <- param[names(param)=="lg_Ar"]
for(i in 1:n){
A[i,1,1]=exp(lg_Ar[i]);
}
if(length(lg_Ar)>n){
for (r in 2:nlvr){
for(i in 1:n){
A[i,r,1]=lg_Ar[((r-1)*n+i)];
}}
}
}
if(num.lv>0){
Au <- param[names(param)=="Au"]
for (d in 1:num.lv){
for(i in 1:n){
A[i,(nlvr-num.lv)+ d,(nlvr-num.lv)+ d] <- exp(Au[(d-1)*n+i]);
}
}
if(length(Au) > num.lv*n){
k <- 0;
for (c1 in 1:num.lv){
r <- c1 + 1;
while (r <= num.lv){
for(i in 1:n){
A[i,(nlvr-num.lv)+ r,(nlvr-num.lv)+ c1] <- Au[num.lv*n+k*n+i];
# A[i,c1,r] <- A[i,r,c1];
}
k <- k+1; r <- r+1;
}
}
}
for(i in 1:n){
A[i,,] <- A[i,,]%*%t(A[i,,])
}
out$A <- A
} else {
out$Ar <- A
}
}
if(num.lv == nlvr && row.eff=="random"){
lg_Ar <- param[names(param)=="lg_Ar"]
Ar <- exp((lg_Ar)[1:length(out$params$row.params)])
out$Ar <- Ar
if(rstruc == 1 && cstrucn[1]>0){
Arm <- matrix(0,nr,nr)
diag(Arm)<-Ar
if(length(lg_Ar)>nr){
k=0;
for(d in 1:nr){
r <- d + 1;
while (r <= nr){
Arm[r,d] = lg_Ar[nr+k];
k=k+1; r=r+1;
}}
}
Arm <- Arm %*% t(Arm)
out$Ar <- diag(Arm)
}
if(rstruc == 2){
Arm <- array(0, dim = c(times,times,nr));
for(i in 1:nr){
for(d in 1:times){
Arm[d,d,i]=Ar[(i-1)*times+d];
}
}
if(length(lg_Ar)>(nr*times)){
k=0;
for(d in 1:times){
r <- d + 1;
while (r <= times){
for(i in 1:nr){
Arm[r,d,i]=lg_Ar[nr*times+k*nr+i];
}
k=k+1; r=r+1;
}}
}
for (i in 1:nr) {
Arm[,,i] <- Arm[,,i] %*% t(Arm[,,i])
}
out$Ar <- c(apply(Arm,3,diag))
}
}
}
if((method %in% c("VA", "EVA")) && !is.null(randomX)){
Abb <- param[names(param) == "Abb"]
xdr <- ncol(xb)
Ab <- array(0,dim=c(p,xdr,xdr))
for (d in 1:xdr){
for(j in 1:p){
Ab[j,d,d] <- exp(Abb[(d-1)*p + j]);
}
}
if(length(Abb)>xdr*p){
k <- 0;
for (c1 in 1:xdr){
r <- c1+1;
while (r <= xdr){
for(j in 1:p){
Ab[j,r,c1] <- Abb[xdr*p+k*p+j];
# Ab[j,c1,r] <- Ab[j,r,c1];
}
k <- k+1; r <- r+1;
}
}
}
for(j in 1:p){
Ab[j,,] <- Ab[j,,]%*%t(Ab[j,,])
}
out$Ab <- Ab
}
}
seed.best <- seed[n.i]
n.i <- n.i+1;
}
#Store the seed that gave the best results, so that we may reproduce results, even if a seed was not explicitly provided
out$seed <- seed.best
if(is.null(formula1)){ out$formula <- formula} else {out$formula <- formula1}
out$Xrandom <- xb
out$D <- Xd
out$TMBfn <- objrFinal
out$TMBfn$par <- optrFinal$par #ensure params in this fn take final values
out$convergence <- optrFinal$convergence == 0
out$quadratic <- quadratic
out$logL <- -out$logL
out$zeta.struc <- zeta.struc
out$beta0com <- beta0com
# if(method == "VA"){ # These have been moved to gllvm.cpp
# if(num.lv > 0) out$logL = out$logL + n*0.5*num.lv
# if(row.eff == "random") out$logL = out$logL + n*0.5
# if(!is.null(randomX)) out$logL = out$logL + p*0.5*ncol(xb)
# if(family=="gaussian") {
# out$logL <- out$logL - n*p*log(pi)/2
# }
# }
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.