Nothing
#' Creates a communities object.
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `create.communities()` was renamed to `make_clusters()` to create a more
#' consistent API.
#' @inheritParams make_clusters
#' @keywords internal
#' @export
create.communities <- function(graph, membership = NULL, algorithm = NULL, merges = NULL, modularity = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "create.communities()", "make_clusters()")
make_clusters(graph = graph, membership = membership, algorithm = algorithm, merges = merges, modularity = modularity)
} # nocov end
#' Community structure via short random walks
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `walktrap.community()` was renamed to `cluster_walktrap()` to create a more
#' consistent API.
#' @inheritParams cluster_walktrap
#' @keywords internal
#' @export
walktrap.community <- function(graph, weights = NULL, steps = 4, merges = TRUE, modularity = TRUE, membership = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "walktrap.community()", "cluster_walktrap()")
cluster_walktrap(graph = graph, weights = weights, steps = steps, merges = merges, modularity = modularity, membership = membership)
} # nocov end
#' Finding communities in graphs based on statistical meachanics
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `spinglass.community()` was renamed to `cluster_spinglass()` to create a more
#' consistent API.
#' @inheritParams cluster_spinglass
#' @keywords internal
#' @export
spinglass.community <- function(graph, weights = NULL, vertex = NULL, spins = 25, parupdate = FALSE, start.temp = 1, stop.temp = 0.01, cool.fact = 0.99, update.rule = c("config", "random", "simple"), gamma = 1.0, implementation = c("orig", "neg"), gamma.minus = 1.0) { # nocov start
lifecycle::deprecate_soft("2.0.0", "spinglass.community()", "cluster_spinglass()")
cluster_spinglass(graph = graph, weights = weights, vertex = vertex, spins = spins, parupdate = parupdate, start.temp = start.temp, stop.temp = stop.temp, cool.fact = cool.fact, update.rule = update.rule, gamma = gamma, implementation = implementation, gamma.minus = gamma.minus)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `showtrace()` was renamed to `show_trace()` to create a more
#' consistent API.
#' @inheritParams show_trace
#' @keywords internal
#' @export
showtrace <- function(communities) { # nocov start
lifecycle::deprecate_soft("2.0.0", "showtrace()", "show_trace()")
show_trace(communities = communities)
} # nocov end
#' Optimal community structure
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `optimal.community()` was renamed to `cluster_optimal()` to create a more
#' consistent API.
#' @inheritParams cluster_optimal
#' @keywords internal
#' @export
optimal.community <- function(graph, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "optimal.community()", "cluster_optimal()")
cluster_optimal(graph = graph, weights = weights)
} # nocov end
#' Finding community structure by multi-level optimization of modularity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `multilevel.community()` was renamed to `cluster_louvain()` to create a more
#' consistent API.
#' @inheritParams cluster_louvain
#' @keywords internal
#' @export
multilevel.community <- function(graph, weights = NULL, resolution = 1) { # nocov start
lifecycle::deprecate_soft("2.0.0", "multilevel.community()", "cluster_louvain()")
cluster_louvain(graph = graph, weights = weights, resolution = resolution)
} # nocov end
#' Modularity of a community structure of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `mod.matrix()` was renamed to `modularity_matrix()` to create a more
#' consistent API.
#' @inheritParams modularity_matrix
#' @keywords internal
#' @export
mod.matrix <- function(graph, membership, weights = NULL, resolution = 1, directed = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "mod.matrix()", "modularity_matrix()")
modularity_matrix(graph = graph, membership = membership, weights = weights, resolution = resolution, directed = directed)
} # nocov end
#' Community structure detecting based on the leading eigenvector of the community matrix
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `leading.eigenvector.community()` was renamed to `cluster_leading_eigen()` to create a more
#' consistent API.
#' @inheritParams cluster_leading_eigen
#' @keywords internal
#' @export
leading.eigenvector.community <- function(graph, steps = -1, weights = NULL, start = NULL, options = arpack_defaults(), callback = NULL, extra = NULL, env = parent.frame()) { # nocov start
lifecycle::deprecate_soft("2.0.0", "leading.eigenvector.community()", "cluster_leading_eigen()")
cluster_leading_eigen(graph = graph, steps = steps, weights = weights, start = start, options = options, callback = callback, extra = extra, env = env)
} # nocov end
#' Finding communities based on propagating labels
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `label.propagation.community()` was renamed to `cluster_label_prop()` to create a more
#' consistent API.
#' @inheritParams cluster_label_prop
#' @keywords internal
#' @export
label.propagation.community <- function(graph, weights = NULL, ..., mode = c("out", "in", "all"), initial = NULL, fixed = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "label.propagation.community()", "cluster_label_prop()")
cluster_label_prop(graph = graph, weights = weights, mode = mode, initial = initial, fixed = fixed, ...)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `is.hierarchical()` was renamed to `is_hierarchical()` to create a more
#' consistent API.
#' @inheritParams is_hierarchical
#' @keywords internal
#' @export
is.hierarchical <- function(communities) { # nocov start
lifecycle::deprecate_soft("2.0.0", "is.hierarchical()", "is_hierarchical()")
is_hierarchical(communities = communities)
} # nocov end
#' Infomap community finding
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `infomap.community()` was renamed to `cluster_infomap()` to create a more
#' consistent API.
#' @inheritParams cluster_infomap
#' @keywords internal
#' @export
infomap.community <- function(graph, e.weights = NULL, v.weights = NULL, nb.trials = 10, modularity = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "infomap.community()", "cluster_infomap()")
cluster_infomap(graph = graph, e.weights = e.weights, v.weights = v.weights, nb.trials = nb.trials, modularity = modularity)
} # nocov end
#' Community structure via greedy optimization of modularity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `fastgreedy.community()` was renamed to `cluster_fast_greedy()` to create a more
#' consistent API.
#' @inheritParams cluster_fast_greedy
#' @keywords internal
#' @export
fastgreedy.community <- function(graph, merges = TRUE, modularity = TRUE, membership = TRUE, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "fastgreedy.community()", "cluster_fast_greedy()")
cluster_fast_greedy(graph = graph, merges = merges, modularity = modularity, membership = membership, weights = weights)
} # nocov end
#' Community structure detection based on edge betweenness
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.betweenness.community()` was renamed to `cluster_edge_betweenness()` to create a more
#' consistent API.
#' @inheritParams cluster_edge_betweenness
#' @keywords internal
#' @export
edge.betweenness.community <- function(graph, weights = NULL, directed = TRUE, edge.betweenness = TRUE, merges = TRUE, bridges = TRUE, modularity = TRUE, membership = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.betweenness.community()", "cluster_edge_betweenness()")
cluster_edge_betweenness(graph = graph, weights = weights, directed = directed, edge.betweenness = edge.betweenness, merges = merges, bridges = bridges, modularity = modularity, membership = membership)
} # nocov end
#' Community structure dendrogram plots
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `dendPlot()` was renamed to `plot_dendrogram()` to create a more
#' consistent API.
#' @inheritParams plot_dendrogram
#' @keywords internal
#' @export
dendPlot <- function(x, mode = igraph_opt("dend.plot.type"), ...) { # nocov start
lifecycle::deprecate_soft("2.0.0", "dendPlot()", "plot_dendrogram()")
plot_dendrogram(x = x, mode = mode, ...)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `cutat()` was renamed to `cut_at()` to create a more
#' consistent API.
#' @inheritParams cut_at
#' @keywords internal
#' @export
cutat <- function(communities, no, steps) { # nocov start
lifecycle::deprecate_soft("2.0.0", "cutat()", "cut_at()")
cut_at(communities = communities, no = no, steps = steps)
} # nocov end
#' Contract several vertices into a single one
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `contract.vertices()` was renamed to `contract()` to create a more
#' consistent API.
#' @inheritParams contract
#' @keywords internal
#' @export
contract.vertices <- function(graph, mapping, vertex.attr.comb = igraph_opt("vertex.attr.comb")) { # nocov start
lifecycle::deprecate_soft("2.0.0", "contract.vertices()", "contract()")
contract(graph = graph, mapping = mapping, vertex.attr.comb = vertex.attr.comb)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `code.length()` was renamed to `code_len()` to create a more
#' consistent API.
#' @inheritParams code_len
#' @keywords internal
#' @export
code.length <- function(communities) { # nocov start
lifecycle::deprecate_soft("2.0.0", "code.length()", "code_len()")
code_len(communities = communities)
} # nocov end
# IGraph R package
# Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
###################################################################
# Community structure
###################################################################
#' Functions to deal with the result of network community detection
#'
#' igraph community detection functions return their results as an object from
#' the `communities` class. This manual page describes the operations of
#' this class.
#'
#' Community structure detection algorithms try to find dense subgraphs in
#' directed or undirected graphs, by optimizing some criteria, and usually
#' using heuristics.
#'
#' igraph implements a number of community detection methods (see them below),
#' all of which return an object of the class `communities`. Because the
#' community structure detection algorithms are different, `communities`
#' objects do not always have the same structure. Nevertheless, they have some
#' common operations, these are documented here.
#'
#' The [print()] generic function is defined for `communities`, it
#' prints a short summary.
#'
#' The `length` generic function call be called on `communities` and
#' returns the number of communities.
#'
#' The `sizes()` function returns the community sizes, in the order of their
#' ids.
#'
#' `membership()` gives the division of the vertices, into communities. It
#' returns a numeric vector, one value for each vertex, the id of its
#' community. Community ids start from one. Note that some algorithms calculate
#' the complete (or incomplete) hierarchical structure of the communities, and
#' not just a single partitioning. For these algorithms typically the
#' membership for the highest modularity value is returned, but see also the
#' manual pages of the individual algorithms.
#'
#' `communities()` is also the name of a function, that returns a list of
#' communities, each identified by their vertices. The vertices will have
#' symbolic names if the `add.vertex.names` igraph option is set, and the
#' graph itself was named. Otherwise numeric vertex ids are used.
#'
#' `modularity()` gives the modularity score of the partitioning. (See
#' [modularity.igraph()] for details. For algorithms that do not
#' result a single partitioning, the highest modularity value is returned.
#'
#' `algorithm()` gives the name of the algorithm that was used to calculate
#' the community structure.
#'
#' `crossing()` returns a logical vector, with one value for each edge,
#' ordered according to the edge ids. The value is `TRUE` iff the edge
#' connects two different communities, according to the (best) membership
#' vector, as returned by `membership()`.
#'
#' `is_hierarchical()` checks whether a hierarchical algorithm was used to
#' find the community structure. Some functions only make sense for
#' hierarchical methods (e.g. `merges()`, `cut_at()` and
#' [as.dendrogram()]).
#'
#' `merges()` returns the merge matrix for hierarchical methods. An error
#' message is given, if a non-hierarchical method was used to find the
#' community structure. You can check this by calling `is_hierarchical()` on
#' the `communities` object.
#'
#' `cut_at()` cuts the merge tree of a hierarchical community finding method,
#' at the desired place and returns a membership vector. The desired place can
#' be expressed as the desired number of communities or as the number of merge
#' steps to make. The function gives an error message, if called with a
#' non-hierarchical method.
#'
#' [as.dendrogram()] converts a hierarchical community structure to a
#' `dendrogram` object. It only works for hierarchical methods, and gives
#' an error message to others. See [stats::dendrogram()] for details.
#'
#' [stats::as.hclust()] is similar to [as.dendrogram()], but converts a
#' hierarchical community structure to a `hclust` object.
#'
#' [ape::as.phylo()] converts a hierarchical community structure to a `phylo`
#' object, you will need the `ape` package for this.
#'
#' `show_trace()` works (currently) only for communities found by the leading
#' eigenvector method ([cluster_leading_eigen()]), and
#' returns a character vector that gives the steps performed by the algorithm
#' while finding the communities.
#'
#' `code_len()` is defined for the InfoMAP method
#' ([cluster_infomap()] and returns the code length of the
#' partition.
#'
#' It is possibly to call the [plot()] function on `communities`
#' objects. This will plot the graph (and uses [plot.igraph()]
#' internally), with the communities shown. By default it colores the vertices
#' according to their communities, and also marks the vertex groups
#' corresponding to the communities. It passes additional arguments to
#' [plot.igraph()], please see that and also
#' [igraph.plotting] on how to change the plot.
#'
#' @rdname communities
#' @family community
#' @param communities,x,object A `communities` object, the result of an
#' igraph community detection function.
#' @param graph An igraph graph object, corresponding to `communities`.
#' @param y An igraph graph object, corresponding to the communities in
#' `x`.
#' @param no Integer scalar, the desired number of communities. If too low or
#' two high, then an error message is given. Exactly one of `no` and
#' `steps` must be supplied.
#' @param steps The number of merge operations to perform to produce the
#' communities. Exactly one of `no` and `steps` must be supplied.
#' @param col A vector of colors, in any format that is accepted by the regular
#' R plotting methods. This vector gives the colors of the vertices explicitly.
#' @param mark.groups A list of numeric vectors. The communities can be
#' highlighted using colored polygons. The groups for which the polygons are
#' drawn are given here. The default is to use the groups given by the
#' communities. Supply `NULL` here if you do not want to highlight any
#' groups.
#' @param edge.color The colors of the edges. By default the edges within
#' communities are colored green and other edges are red.
#' @param hang Numeric scalar indicating how the height of leaves should be
#' computed from the heights of their parents; see [plot.hclust()].
#' @param use.modularity Logical scalar, whether to use the modularity values
#' to define the height of the branches.
#' @param \dots Additional arguments. `plot.communities` passes these to
#' [plot.igraph()]. The other functions silently ignore
#' them.
#' @param membership Numeric vector, one value for each vertex, the membership
#' vector of the community structure. Might also be `NULL` if the
#' community structure is given in another way, e.g. by a merge matrix.
#' @param algorithm If not `NULL` (meaning an unknown algorithm), then a
#' character scalar, the name of the algorithm that produced the community
#' structure.
#' @param merges If not `NULL`, then the merge matrix of the hierarchical
#' community structure. See `merges()` below for more information on its
#' format.
#' @param modularity Numeric scalar or vector, the modularity value of the
#' community structure. It can also be `NULL`, if the modularity of the
#' (best) split is not available.
#' @return [print()] returns the `communities` object itself,
#' invisibly.
#'
#' `length` returns an integer scalar.
#'
#' `sizes()` returns a numeric vector.
#'
#' `membership()` returns a numeric vector, one number for each vertex in
#' the graph that was the input of the community detection.
#'
#' `modularity()` returns a numeric scalar.
#'
#' `algorithm()` returns a character scalar.
#'
#' `crossing()` returns a logical vector.
#'
#' `is_hierarchical()` returns a logical scalar.
#'
#' `merges()` returns a two-column numeric matrix.
#'
#' `cut_at()` returns a numeric vector, the membership vector of the
#' vertices.
#'
#' [as.dendrogram()] returns a [dendrogram] object.
#'
#' `show_trace()` returns a character vector.
#'
#' `code_len()` returns a numeric scalar for communities found with the
#' InfoMAP method and `NULL` for other methods.
#'
#' [plot()] for `communities` objects returns `NULL`, invisibly.
#'
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso See [plot_dendrogram()] for plotting community structure
#' dendrograms.
#'
#' See [compare()] for comparing two community structures
#' on the same graph.
#' @keywords graphs
#' @export
#' @examples
#'
#' karate <- make_graph("Zachary")
#' wc <- cluster_walktrap(karate)
#' modularity(wc)
#' membership(wc)
#' plot(wc, karate)
#'
membership <- function(communities) {
if (!is.null(communities$membership)) {
res <- communities$membership
} else if (!is.null(communities$merges) &&
!is.null(communities$modularity)) {
res <- community.to.membership2(
communities$merges, communities$vcount,
which.max(communities$modularity)
)
} else {
stop("Cannot calculate community membership")
}
if (igraph_opt("add.vertex.names") && !is.null(communities$names)) {
names(res) <- communities$names
}
class(res) <- "membership"
res
}
#' @method print membership
#' @family community
#' @export
print.membership <- function(x, ...) print(unclass(x), ...)
#' Declare a numeric vector as a membership vector
#'
#' This is useful if you want to use functions defined on
#' membership vectors, but your membership vector does not
#' come from an igraph clustering method.
#'
#' @param x The input vector.
#' @return The input vector, with the `membership` class added.
#' @family community
#' @export
#' @examples
#' ## Compare to the correct clustering
#' g <- (make_full_graph(10) + make_full_graph(10)) %>%
#' rewire(each_edge(p = 0.2))
#' correct <- rep(1:2, each = 10) %>% as_membership()
#' fc <- cluster_fast_greedy(g)
#' compare(correct, fc)
#' compare(correct, membership(fc))
as_membership <- function(x) add_class(x, "membership")
#' @rdname communities
#' @method print communities
#' @export
print.communities <- function(x, ...) {
noc <- if (!is.null(x$membership)) max(membership(x), 0) else NA
mod <- if (!is.null(x$modularity)) {
modularity(x) %>% format(digits = 2)
} else {
NA_real_
}
alg <- x$algorithm %||% "unknown"
cat("IGRAPH clustering ", alg, ", groups: ", noc, ", mod: ", mod, "\n", sep = "")
if (!is.null(x$membership)) {
grp <- groups(x)
cat("+ groups:\n")
hp <- function(o) {
head_print(o,
max_lines = igraph_opt("auto.print.lines"),
omitted_footer = "+ ... omitted several groups/vertices\n",
)
}
indent_print(grp, .printer = hp, .indent = " ")
} else {
cat(" + groups not available\n")
}
invisible(x)
}
#' Creates a communities object.
#'
#' This is useful to integrate the results of community finding algorithms
#' that are not included in igraph.
#'
#' @param graph The graph of the community structure.
#' @param membership The membership vector of the community structure, a
#' numeric vector denoting the id of the community for each vertex. It
#' might be `NULL` for hierarchical community structures.
#' @param algorithm Character string, the algorithm that generated
#' the community structure, it can be arbitrary.
#' @param merges A merge matrix, for hierarchical community structures (or
#' `NULL` otherwise.
#' @param modularity Modularity value of the community structure. If this
#' is `TRUE` and the membership vector is available, then it the
#' modularity values is calculated automatically.
#' @return A `communities` object.
#'
#'
#' @family community
#' @export
make_clusters <- function(graph, membership = NULL, algorithm = NULL,
merges = NULL, modularity = TRUE) {
stopifnot(is.null(membership) || is.numeric(membership))
stopifnot(is.null(algorithm) ||
(is.character(algorithm) && length(algorithm) == 1))
stopifnot(is.null(merges) ||
(is.matrix(merges) && is.numeric(merges) && ncol(merges) == 2))
stopifnot(is.null(modularity) ||
(is.logical(modularity) && length(modularity) == 1) ||
(is.numeric(modularity) &&
length(modularity) %in% c(1, length(membership))))
if (is.logical(modularity)) {
if (modularity && !is.null(membership)) {
modularity <- modularity(graph, membership)
} else {
modularity <- NULL
}
}
res <- list(
membership = membership,
algorithm = if (is.null(algorithm)) "unknown" else algorithm,
modularity = modularity
)
if (!is.null(merges)) {
res$merges <- merges
}
if (!is.null(membership)) {
res$vcount <- length(membership)
} else if (!is.null(merges)) {
res$vcount <- nrow(merges) + 1
}
class(res) <- "communities"
res
}
#' @family community
#' @export
modularity <- function(x, ...) {
UseMethod("modularity")
}
#' Modularity of a community structure of a graph
#'
#' This function calculates how modular is a given division of a graph into
#' subgraphs.
#'
#' `modularity()` calculates the modularity of a graph with respect to the
#' given `membership` vector.
#'
#' The modularity of a graph with respect to some division (or vertex types)
#' measures how good the division is, or how separated are the different vertex
#' types from each other. It defined as \deqn{Q=\frac{1}{2m} \sum_{i,j}
#' (A_{ij}-\gamma\frac{k_i k_j}{2m})\delta(c_i,c_j),}{Q=1/(2m) * sum( (Aij-gamma*ki*kj/(2m)
#' ) delta(ci,cj),i,j),} here \eqn{m} is the number of edges, \eqn{A_{ij}}{Aij}
#' is the element of the \eqn{A} adjacency matrix in row \eqn{i} and column
#' \eqn{j}, \eqn{k_i}{ki} is the degree of \eqn{i}, \eqn{k_j}{kj} is the degree
#' of \eqn{j}, \eqn{c_i}{ci} is the type (or component) of \eqn{i},
#' \eqn{c_j}{cj} that of \eqn{j}, the sum goes over all \eqn{i} and \eqn{j}
#' pairs of vertices, and \eqn{\delta(x,y)}{delta(x,y)} is 1 if \eqn{x=y} and 0
#' otherwise. For directed graphs, it is defined as
#' \deqn{Q = \frac{1}{m} \sum_{i,j} (A_{ij}-\gamma
#' \frac{k_i^{out} k_j^{in}}{m})\delta(c_i,c_j).}{Q=1/(m) * sum(
#' (Aij-gamma*ki^out*kj^in/(m) ) delta(ci,cj),i,j).}
#'
#' The resolution parameter \eqn{\gamma}{gamma} allows weighting the random
#' null model, which might be useful when finding partitions with a high
#' modularity. Maximizing modularity with higher values of the resolution
#' parameter typically results in more, smaller clusters when finding
#' partitions with a high modularity. Lower values typically results in fewer,
#' larger clusters. The original definition of modularity is retrieved when
#' setting \eqn{\gamma}{gamma} to 1.
#'
#' If edge weights are given, then these are considered as the element of the
#' \eqn{A} adjacency matrix, and \eqn{k_i}{ki} is the sum of weights of
#' adjacent edges for vertex \eqn{i}.
#'
#' `modularity_matrix()` calculates the modularity matrix. This is a dense matrix,
#' and it is defined as the difference of the adjacency matrix and the
#' configuration model null model matrix. In other words element
#' \eqn{M_{ij}}{M[i,j]} is given as \eqn{A_{ij}-d_i
#' d_j/(2m)}{A[i,j]-d[i]d[j]/(2m)}, where \eqn{A_{ij}}{A[i,j]} is the (possibly
#' weighted) adjacency matrix, \eqn{d_i}{d[i]} is the degree of vertex \eqn{i},
#' and \eqn{m} is the number of edges (or the total weights in the graph, if it
#' is weighed).
#'
#' @aliases modularity
#' @param x,graph The input graph.
#' @param membership Numeric vector, one value for each vertex, the membership
#' vector of the community structure.
#' @param weights If not `NULL` then a numeric vector giving edge weights.
#' @param resolution The resolution parameter. Must be greater than or equal to
#' 0. Set it to 1 to use the classical definition of modularity.
#' @param directed Whether to use the directed or undirected version of
#' modularity. Ignored for undirected graphs.
#' @param \dots Additional arguments, none currently.
#' @return For `modularity()` a numeric scalar, the modularity score of the
#' given configuration.
#'
#' For `modularity_matrix()` a numeric square matrix, its order is the number of
#' vertices in the graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [cluster_walktrap()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()], [cluster_spinglass()],
#' [cluster_louvain()] and [cluster_leiden()] for
#' various community detection methods.
#' @references Clauset, A.; Newman, M. E. J. & Moore, C. Finding community
#' structure in very large networks, *Physical Review E* 2004, 70, 066111
#' @method modularity igraph
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' wtc <- cluster_walktrap(g)
#' modularity(wtc)
#' modularity(g, membership(wtc))
#'
modularity.igraph <- function(x, membership, weights = NULL, resolution = 1, directed = TRUE, ...) {
# Argument checks
ensure_igraph(x)
if (is.null(membership) || (!is.numeric(membership) && !is.factor(membership))) {
stop("Membership is not a numerical vector")
}
membership <- as.numeric(membership)
if (!is.null(weights)) weights <- as.numeric(weights)
resolution <- as.numeric(resolution)
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_modularity, x, membership - 1, weights, resolution, directed)
res
}
#' @rdname communities
#' @method modularity communities
#' @export
modularity.communities <- function(x, ...) {
if (!is.null(x$modularity)) {
max(x$modularity)
} else {
stop("Modularity was not calculated")
}
}
#' @rdname modularity.igraph
#' @export
modularity_matrix <- function(graph, membership = lifecycle::deprecated(), weights = NULL, resolution = 1, directed = TRUE) {
# Argument checks
ensure_igraph(graph)
if (!missing(membership)) {
lifecycle::deprecate_warn("2.1.0", "modularity_matrix(membership = 'is no longer used')")
}
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
resolution <- as.numeric(resolution)
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_modularity_matrix, graph, weights, resolution, directed)
res
}
#' @rdname communities
#' @method length communities
#' @export
length.communities <- function(x) {
m <- membership(x)
max(m, 0)
}
#' @rdname communities
#' @export
sizes <- function(communities) {
m <- membership(communities)
table(`Community sizes` = m)
}
#' @rdname communities
#' @export
algorithm <- function(communities) {
communities$algorithm
}
#' @rdname communities
#' @export
merges <- function(communities) {
if (!is.null(communities$merges)) {
communities$merges
} else {
stop("Not a hierarchical community structure")
}
}
#' @rdname communities
#' @export
crossing <- function(communities, graph) {
m <- membership(communities)
el <- as_edgelist(graph, names = FALSE)
m1 <- m[el[, 1]]
m2 <- m[el[, 2]]
res <- m1 != m2
if (!is.null(names(m1))) {
names(res) <- paste(names(m1), names(m2), sep = "|")
}
res
}
#' @rdname communities
#' @export
code_len <- function(communities) {
communities$codelength
}
#' @rdname communities
#' @export
is_hierarchical <- function(communities) {
!is.null(communities$merges)
}
complete.dend <- function(comm, use.modularity) {
merges <- comm$merges
if (nrow(merges) < comm$vcount - 1) {
if (use.modularity) {
stop(paste(
"`use.modularity' requires a full dendrogram,",
"i.e. a connected graph"
))
}
miss <- seq_len(comm$vcount + nrow(merges))[-as.vector(merges)]
miss <- c(miss, seq_len(length(miss) - 2) + comm$vcount + nrow(merges))
miss <- matrix(miss, byrow = TRUE, ncol = 2)
merges <- rbind(merges, miss)
}
storage.mode(merges) <- "integer"
merges
}
# The following functions were adapted from the stats R package
#' @rdname communities
#' @importFrom stats as.dendrogram
#' @method as.dendrogram communities
#' @export
as.dendrogram.communities <- function(object, hang = -1, use.modularity = FALSE,
...) {
if (!is_hierarchical(object)) {
stop("Not a hierarchical community structure")
}
.memberDend <- function(x) {
r <- attr(x, "x.member")
if (is.null(r)) {
r <- attr(x, "members")
if (is.null(r)) r <- 1:1
}
r
}
## If multiple components, then we merge them in arbitrary order
merges <- complete.dend(object, use.modularity)
storage.mode(merges) <- "integer"
if (is.null(object$names)) {
object$names <- 1:(nrow(merges) + 1)
}
z <- list()
if (!use.modularity || is.null(object$modularity)) {
object$height <- 1:nrow(merges)
} else {
object$height <- object$modularity[-1]
object$height <- cumsum(object$height - min(object$height))
}
nMerge <- length(oHgt <- object$height)
if (nMerge != nrow(merges)) {
stop("'merge' and 'height' do not fit!")
}
hMax <- oHgt[nMerge]
one <- 1L
two <- 2L
leafs <- nrow(merges) + 1
for (k in 1:nMerge) {
x <- merges[k, ] # no sort() anymore!
if (any(neg <- x < leafs + 1)) {
h0 <- if (hang < 0) 0 else max(0, oHgt[k] - hang * hMax)
}
if (all(neg)) { # two leaves
zk <- as.list(x)
attr(zk, "members") <- two
attr(zk, "midpoint") <- 0.5 # mean( c(0,1) )
objlabels <- object$names[x]
attr(zk[[1]], "label") <- objlabels[1]
attr(zk[[2]], "label") <- objlabels[2]
attr(zk[[1]], "members") <- attr(zk[[2]], "members") <- one
attr(zk[[1]], "height") <- attr(zk[[2]], "height") <- h0
attr(zk[[1]], "leaf") <- attr(zk[[2]], "leaf") <- TRUE
} else if (any(neg)) { # one leaf, one node
# as.character(x) is not okay as it starts converting values >= 100000
# to scientific notation
X <- format(x, scientific = FALSE, trim = TRUE)
## Originally had "x <- sort(..) above => leaf always left, x[1];
## don't want to assume this
isL <- x[1] < leafs + 1 ## is leaf left?
zk <-
if (isL) {
list(x[1], z[[X[2]]])
} else {
list(z[[X[1]]], x[2])
}
attr(zk, "members") <- attr(z[[X[1 + isL]]], "members") + one
attr(zk, "midpoint") <-
(.memberDend(zk[[1]]) + attr(z[[X[1 + isL]]], "midpoint")) / 2
attr(zk[[2 - isL]], "members") <- one
attr(zk[[2 - isL]], "height") <- h0
attr(zk[[2 - isL]], "label") <- object$names[x[2 - isL]]
attr(zk[[2 - isL]], "leaf") <- TRUE
} else { # two nodes
# as.character(x) is not okay as it starts converting values >= 100000
# to scientific notation
x <- format(x, scientific = FALSE, trim = TRUE)
zk <- list(z[[x[1]]], z[[x[2]]])
attr(zk, "members") <- attr(z[[x[1]]], "members") +
attr(z[[x[2]]], "members")
attr(zk, "midpoint") <- (attr(z[[x[1]]], "members") +
attr(z[[x[1]]], "midpoint") +
attr(z[[x[2]]], "midpoint")) / 2
}
attr(zk, "height") <- oHgt[k]
z[[k <- format(k + leafs, scientific = FALSE)]] <- zk
}
z <- z[[k]]
class(z) <- "dendrogram"
z
}
#' @rdname communities
#' @importFrom stats as.hclust
#' @method as.hclust communities
#' @export
as.hclust.communities <- function(x, hang = -1, use.modularity = FALSE,
...) {
as.hclust(as.dendrogram(x, hang = hang, use.modularity = use.modularity))
}
as.phylo.communities <- function(x, use.modularity = FALSE, ...) {
if (!is_hierarchical(x)) {
stop("Not a hierarchical community structure")
}
## If multiple components, then we merge them in arbitrary order
merges <- complete.dend(x, use.modularity)
if (!use.modularity || is.null(x$modularity)) {
height <- 1:nrow(merges)
} else {
height <- x$modularity[-1]
height <- cumsum(height - min(height))
}
if (is.null(x$names)) {
labels <- 1:(nrow(merges) + 1)
} else {
labels <- x$names
}
N <- nrow(merges)
edge <- matrix(0L, 2 * N, 2)
edge.length <- numeric(2 * N)
node <- integer(N)
node[N] <- N + 2L
cur.nod <- N + 3L
j <- 1L
for (i in N:1) {
edge[j:(j + 1), 1] <- node[i]
for (l in 1:2) {
k <- j + l - 1L
y <- merges[i, l]
if (y > N + 1) {
edge[k, 2] <- node[y - N - 1] <- cur.nod
cur.nod <- cur.nod + 1L
edge.length[k] <- height[i] - height[y - N - 1]
} else {
edge[k, 2] <- y
edge.length[k] <- height[i]
}
}
j <- j + 2L
}
obj <- list(
edge = edge, edge.length = edge.length / 2, tip.label = labels,
Nnode = N
)
class(obj) <- "phylo"
ape::reorder.phylo(obj)
}
rlang::on_load(s3_register("ape::as.phylo", "communities"))
#' @rdname communities
#' @export
cut_at <- function(communities, no, steps) {
if (!inherits(communities, "communities")) {
stop("Not a community structure")
}
if (!is_hierarchical(communities)) {
stop("Not a hierarchical communitity structure")
}
if ((!missing(no) && !missing(steps)) ||
(missing(no) && missing(steps))) {
stop("Please give either `no' or `steps' (but not both)")
}
if (!missing(steps)) {
mm <- merges(communities)
if (steps > nrow(mm)) {
cli::cli_warn("Cannot make that many steps.")
steps <- nrow(mm)
}
community.to.membership2(mm, communities$vcount, steps)
} else {
mm <- merges(communities)
noc <- communities$vcount - nrow(mm) # final number of communities
if (no < noc) {
cli::cli_warn("Cannot have that few communities.")
no <- noc
}
steps <- communities$vcount - no
community.to.membership2(mm, communities$vcount, steps)
}
}
#' @rdname communities
#' @export
show_trace <- function(communities) {
if (!inherits(communities, "communities")) {
stop("Not a community structure")
}
if (is.null(communities$history)) {
stop("History was not recorded")
}
res <- character()
i <- 1
while (i <= length(communities$history)) {
if (communities$history[i] == 2) { # IGRAPH_LEVC_HIST_SPLIT
resnew <- paste(
"Splitting community", communities$history[i + 1],
"into two."
)
i <- i + 2
} else if (communities$history[i] == 3) { # IGRAPH_LEVC_HIST_FAILED
resnew <- paste(
"Failed splitting community",
communities$history[i + 1], "into two."
)
i <- i + 2
} else if (communities$history[i] == 4) { # IGRAPH_LEVC_START_FULL
resnew <- "Starting with the whole graph as a community."
i <- i + 1
} else if (communities$history[i] == 5) { # IGRAPH_LEVC_START_GIVEN
resnew <- paste(
"Starting from the", communities$history[i + 1],
"given communities."
)
i <- i + 2
}
res <- c(res, resnew)
}
res
}
#####################################################################
community.to.membership2 <- function(merges, vcount, steps) {
mode(merges) <- "numeric"
mode(vcount) <- "numeric"
mode(steps) <- "numeric"
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_community_to_membership2, merges - 1, vcount, steps)
res + 1
}
#####################################################################
#' Finding communities in graphs based on statistical meachanics
#'
#' This function tries to find communities in graphs via a spin-glass model and
#' simulated annealing.
#'
#' This function tries to find communities in a graph. A community is a set of
#' nodes with many edges inside the community and few edges between outside it
#' (i.e. between the community itself and the rest of the graph.)
#'
#' This idea is reversed for edges having a negative weight, i.e. few negative
#' edges inside a community and many negative edges between communities. Note
#' that only the \sQuote{neg} implementation supports negative edge weights.
#'
#' The `spinglass.cummunity` function can solve two problems related to
#' community detection. If the `vertex` argument is not given (or it is
#' `NULL`), then the regular community detection problem is solved
#' (approximately), i.e. partitioning the vertices into communities, by
#' optimizing the an energy function.
#'
#' If the `vertex` argument is given and it is not `NULL`, then it
#' must be a vertex id, and the same energy function is used to find the
#' community of the the given vertex. See also the examples below.
#'
#' @param graph The input graph, can be directed but the direction of the edges
#' is neglected.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param vertex This parameter can be used to calculate the community of a
#' given vertex without calculating all communities. Note that if this argument
#' is present then some other arguments are ignored.
#' @param spins Integer constant, the number of spins to use. This is the upper
#' limit for the number of communities. It is not a problem to supply a
#' (reasonably) big number here, in which case some spin states will be
#' unpopulated.
#' @param parupdate Logical constant, whether to update the spins of the
#' vertices in parallel (synchronously) or not. This argument is ignored if the
#' second form of the function is used (i.e. the \sQuote{`vertex`} argument
#' is present). It is also not implemented in the \dQuote{neg} implementation.
#' @param start.temp Real constant, the start temperature. This argument is
#' ignored if the second form of the function is used (i.e. the
#' \sQuote{`vertex`} argument is present).
#' @param stop.temp Real constant, the stop temperature. The simulation
#' terminates if the temperature lowers below this level. This argument is
#' ignored if the second form of the function is used (i.e. the
#' \sQuote{`vertex`} argument is present).
#' @param cool.fact Cooling factor for the simulated annealing. This argument
#' is ignored if the second form of the function is used (i.e. the
#' \sQuote{`vertex`} argument is present).
#' @param update.rule Character constant giving the \sQuote{null-model} of the
#' simulation. Possible values: \dQuote{simple} and \dQuote{config}.
#' \dQuote{simple} uses a random graph with the same number of edges as the
#' baseline probability and \dQuote{config} uses a random graph with the same
#' vertex degrees as the input graph.
#' @param gamma Real constant, the gamma argument of the algorithm. This
#' specifies the balance between the importance of present and non-present
#' edges in a community. Roughly, a comunity is a set of vertices having many
#' edges inside the community and few edges outside the community. The default
#' 1.0 value makes existing and non-existing links equally important. Smaller
#' values make the existing links, greater values the missing links more
#' important.
#' @param implementation Character scalar. Currently igraph contains two
#' implementations for the Spin-glass community finding algorithm. The faster
#' original implementation is the default. The other implementation, that takes
#' into account negative weights, can be chosen by supplying \sQuote{neg} here.
#' @param gamma.minus Real constant, the gamma.minus parameter of the
#' algorithm. This specifies the balance between the importance of present and
#' non-present negative weighted edges in a community. Smaller values of
#' gamma.minus, leads to communities with lesser negative intra-connectivity.
#' If this argument is set to zero, the algorithm reduces to a graph coloring
#' algorithm, using the number of spins as the number of colors. This argument
#' is ignored if the \sQuote{orig} implementation is chosen.
#' @return If the `vertex` argument is not given, i.e. the first form is
#' used then a [cluster_spinglass()] returns a
#' [communities()] object.
#'
#' If the `vertex` argument is present, i.e. the second form is used then a
#' named list is returned with the following components:
#' \item{community}{Numeric vector giving the ids of the vertices in the same
#' community as `vertex`.} \item{cohesion}{The cohesion score of the
#' result, see references.} \item{adhesion}{The adhesion score of the result,
#' see references.} \item{inner.links}{The number of edges within the community
#' of `vertex`.} \item{outer.links}{The number of edges between the
#' community of `vertex` and the rest of the graph. }
#' @author Jorg Reichardt for the original code and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the igraph glue code.
#'
#' Changes to the original function for including the possibility of negative
#' ties were implemented by Vincent Traag (<https://www.traag.net/>).
#' @seealso [communities()], [components()]
#' @references J. Reichardt and S. Bornholdt: Statistical Mechanics of
#' Community Detection, *Phys. Rev. E*, 74, 016110 (2006),
#' <https://arxiv.org/abs/cond-mat/0603718>
#'
#' M. E. J. Newman and M. Girvan: Finding and evaluating community structure in
#' networks, *Phys. Rev. E* 69, 026113 (2004)
#'
#' V.A. Traag and Jeroen Bruggeman: Community detection in networks with
#' positive and negative links, <https://arxiv.org/abs/0811.2329> (2008).
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(10, 5 / 10) %du% sample_gnp(9, 5 / 9)
#' g <- add_edges(g, c(1, 12))
#' g <- induced_subgraph(g, subcomponent(g, 1))
#' cluster_spinglass(g, spins = 2)
#' cluster_spinglass(g, vertex = 1)
#'
cluster_spinglass <- function(graph, weights = NULL, vertex = NULL, spins = 25,
parupdate = FALSE, start.temp = 1,
stop.temp = 0.01, cool.fact = 0.99,
update.rule = c("config", "random", "simple"),
gamma = 1.0, implementation = c("orig", "neg"),
gamma.minus = 1.0) {
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
update.rule <- igraph.match.arg(update.rule)
update.rule <- switch(update.rule,
"simple" = 0,
"random" = 0,
"config" = 1
)
implementation <- switch(igraph.match.arg(implementation),
"orig" = 0,
"neg" = 1
)
on.exit(.Call(R_igraph_finalizer))
if (is.null(vertex) || length(vertex) == 0) {
res <- .Call(
R_igraph_spinglass_community, graph, weights,
as.numeric(spins), as.logical(parupdate),
as.numeric(start.temp),
as.numeric(stop.temp), as.numeric(cool.fact),
as.numeric(update.rule), as.numeric(gamma),
as.numeric(implementation), as.numeric(gamma.minus)
)
res$algorithm <- "spinglass"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- vertex_attr(graph, "name")
}
class(res) <- "communities"
} else {
res <- .Call(
R_igraph_spinglass_my_community, graph, weights,
as_igraph_vs(graph, vertex) - 1, as.numeric(spins),
as.numeric(update.rule), as.numeric(gamma)
)
res$community <- res$community + 1
}
res
}
#' Finding community structure of a graph using the Leiden algorithm of Traag,
#' van Eck & Waltman.
#'
#' The Leiden algorithm is similar to the Louvain algorithm,
#' [cluster_louvain()], but it is faster and yields higher quality
#' solutions. It can optimize both modularity and the Constant Potts Model,
#' which does not suffer from the resolution-limit (see preprint
#' http://arxiv.org/abs/1104.3083).
#'
#' The Leiden algorithm consists of three phases: (1) local moving of nodes,
#' (2) refinement of the partition and (3) aggregation of the network based on
#' the refined partition, using the non-refined partition to create an initial
#' partition for the aggregate network. In the local move procedure in the
#' Leiden algorithm, only nodes whose neighborhood has changed are visited. The
#' refinement is done by restarting from a singleton partition within each
#' cluster and gradually merging the subclusters. When aggregating, a single
#' cluster may then be represented by several nodes (which are the subclusters
#' identified in the refinement).
#'
#' The Leiden algorithm provides several guarantees. The Leiden algorithm is
#' typically iterated: the output of one iteration is used as the input for the
#' next iteration. At each iteration all clusters are guaranteed to be
#' connected and well-separated. After an iteration in which nothing has
#' changed, all nodes and some parts are guaranteed to be locally optimally
#' assigned. Finally, asymptotically, all subsets of all clusters are
#' guaranteed to be locally optimally assigned. For more details, please see
#' Traag, Waltman & van Eck (2019).
#'
#' The objective function being optimized is
#'
#' \deqn{\frac{1}{2m} \sum_{ij} (A_{ij} - \gamma n_i n_j)\delta(\sigma_i, \sigma_j)}{1 / 2m sum_ij (A_ij - gamma n_i n_j)d(s_i, s_j)}
#'
#' where \eqn{m}{m} is the total edge weight, \eqn{A_{ij}}{A_ij} is the weight
#' of edge \eqn{(i, j)}, \eqn{\gamma}{gamma} is the so-called resolution
#' parameter, \eqn{n_i} is the node weight of node \eqn{i}, \eqn{\sigma_i}{s_i}
#' is the cluster of node \eqn{i} and \eqn{\delta(x, y) = 1}{d(x, y) = 1} if and
#' only if \eqn{x = y} and \eqn{0} otherwise. By setting \eqn{n_i = k_i}, the
#' degree of node \eqn{i}, and dividing \eqn{\gamma}{gamma} by \eqn{2m}, you
#' effectively obtain an expression for modularity.
#'
#' Hence, the standard modularity will be optimized when you supply the degrees
#' as `vertex_weights` and by supplying as a resolution parameter
#' \eqn{\frac{1}{2m}}{1/(2m)}, with \eqn{m} the number of edges. If you do not
#' specify any `vertex_weights`, the correct vertex weights and scaling of
#' \eqn{\gamma}{gamma} is determined automatically by the
#' `objective_function` argument.
#'
#' @param graph The input graph, only undirected graphs are supported.
#' @param objective_function Whether to use the Constant Potts Model (CPM) or
#' modularity. Must be either `"CPM"` or `"modularity"`.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param resolution The resolution parameter to use. Higher
#' resolutions lead to more smaller communities, while lower resolutions lead
#' to fewer larger communities.
#' @param resolution_parameter `r lifecycle::badge("superseded")` Use `resolution` instead.
#' @param beta Parameter affecting the randomness in the Leiden algorithm.
#' This affects only the refinement step of the algorithm.
#' @param initial_membership If provided, the Leiden algorithm
#' will try to improve this provided membership. If no argument is
#' provided, the aglorithm simply starts from the singleton partition.
#' @param n_iterations the number of iterations to iterate the Leiden
#' algorithm. Each iteration may improve the partition further.
#' @param vertex_weights the vertex weights used in the Leiden algorithm.
#' If this is not provided, it will be automatically determined on the basis
#' of the `objective_function`. Please see the details of this function
#' how to interpret the vertex weights.
#' @inheritParams rlang::args_dots_empty
#' @return `cluster_leiden()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Vincent Traag
#' @seealso See [communities()] for extracting the membership,
#' modularity scores, etc. from the results.
#'
#' Other community detection algorithms: [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()],
#' [cluster_label_prop()]
#' [cluster_louvain()]
#' [cluster_fluid_communities()]
#' [cluster_infomap()]
#' [cluster_optimal()]
#' [cluster_walktrap()]
#' @references Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain
#' to Leiden: guaranteeing well-connected communities. Scientific
#' reports, 9(1), 5233. doi: 10.1038/s41598-019-41695-z, arXiv:1810.08473v3 \[cs.SI\]
#' @family community
#' @export
#' @keywords graphs
#' @examples
#' g <- make_graph("Zachary")
#' # By default CPM is used
#' r <- quantile(strength(g))[2] / (gorder(g) - 1)
#' # Set seed for sake of reproducibility
#' set.seed(1)
#' ldc <- cluster_leiden(g, resolution = r)
#' print(ldc)
#' plot(ldc, g)
cluster_leiden <- function(graph, objective_function = c("CPM", "modularity"),
...,
weights = NULL, resolution = 1,
resolution_parameter = deprecated(), beta = 0.01,
initial_membership = NULL,
n_iterations = 2, vertex_weights = NULL) {
check_dots_empty()
if (lifecycle::is_present(resolution_parameter)) {
lifecycle::deprecate_soft("2.1.0",
"cluster_leiden(resolution_parameter)",
"cluster_leiden(resolution)")
resolution <- resolution_parameter
}
ensure_igraph(graph)
# Parse objective function argument
objective_function <- igraph.match.arg(objective_function)
objective_function <- switch(objective_function,
"cpm" = 0,
"modularity" = 1
)
# Parse edge weights argument
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && !any(is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
# Parse initial_membership argument
if (!is.null(initial_membership) && !any(is.na(initial_membership))) {
initial_membership <- as.numeric(initial_membership)
} else {
initial_membership <- NULL
}
# Parse node weights argument
if (!is.null(vertex_weights) && !any(is.na(vertex_weights))) {
vertex_weights <- as.numeric(vertex_weights)
if (objective_function == 1) { # Using modularity
cli::cli_warn("Providing node weights contradicts using modularity.")
}
} else {
if (objective_function == 1) { # Using modularity
# Set correct node weights
vertex_weights <- strength(graph, weights = weights)
# Also correct resolution parameter
resolution <- resolution / sum(vertex_weights)
}
}
on.exit(.Call(R_igraph_finalizer))
membership <- initial_membership
if (n_iterations > 0) {
res <- .Call(
R_igraph_community_leiden, graph, weights,
vertex_weights, as.numeric(resolution),
as.numeric(beta), !is.null(membership), as.numeric(n_iterations),
membership
)
membership <- res$membership
} else {
prev_quality <- -Inf
quality <- 0.0
while (prev_quality < quality) {
prev_quality <- quality
res <- .Call(
R_igraph_community_leiden, graph, weights,
vertex_weights, as.numeric(resolution),
as.numeric(beta), !is.null(membership), 1,
membership
)
membership <- res$membership
quality <- res$quality
}
}
res$algorithm <- "leiden"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- vertex_attr(graph, "name")
}
class(res) <- "communities"
res
}
#' Community detection algorithm based on interacting fluids
#'
#' The algorithm detects communities based on the simple idea of
#' several fluids interacting in a non-homogeneous environment
#' (the graph topology), expanding and contracting based on their
#' interaction and density.
#'
#' @param graph The input graph. The graph must be simple and connected.
#' Empty graphs are not supported as well as single vertex graphs.
#' Edge directions are ignored. Weights are not considered.
#' @param no.of.communities The number of communities to be found. Must be
#' greater than 0 and fewer than number of vertices in the graph.
#' @return `cluster_fluid_communities()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Ferran Parés
#' @seealso See [communities()] for extracting the membership,
#' modularity scores, etc. from the results.
#'
#' Other community detection algorithms: [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()],
#' [cluster_label_prop()]
#' [cluster_louvain()],
#' [cluster_leiden()]
#' @references Parés F, Gasulla DG, et. al. (2018) Fluid Communities: A Competitive,
#' Scalable and Diverse Community Detection Algorithm. In: Complex Networks
#' & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth
#' International Conference on Complex Networks and Their Applications),
#' Springer, vol 689, p 229, doi: 10.1007/978-3-319-72150-7_19
#' @family community
#' @export
#' @keywords graphs
#' @examples
#' g <- make_graph("Zachary")
#' comms <- cluster_fluid_communities(g, 2)
cluster_fluid_communities <- function(graph, no.of.communities) {
# Argument checks
ensure_igraph(graph)
no.of.communities <- as.numeric(no.of.communities)
on.exit(.Call(R_igraph_finalizer))
# Function call
membership <- .Call(R_igraph_community_fluid_communities, graph, no.of.communities)
res <- list()
res$membership <- membership + 1
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "fluid communities"
class(res) <- "communities"
res
}
#' Community structure via short random walks
#'
#' This function tries to find densely connected subgraphs, also called
#' communities in a graph via random walks. The idea is that short random walks
#' tend to stay in the same community.
#'
#' This function is the implementation of the Walktrap community finding
#' algorithm, see Pascal Pons, Matthieu Latapy: Computing communities in large
#' networks using random walks, https://arxiv.org/abs/physics/0512106
#'
#' @param graph The input graph, edge directions are ignored in directed
#' graphs.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. Larger edge
#' weights increase the probability that an edge is selected by the random
#' walker. In other words, larger edge weights correspond to stronger connections.
#' @param steps The length of the random walks to perform.
#' @param merges Logical scalar, whether to include the merge matrix in the
#' result.
#' @param modularity Logical scalar, whether to include the vector of the
#' modularity scores in the result. If the `membership` argument is true,
#' then it will always be calculated.
#' @param membership Logical scalar, whether to calculate the membership vector
#' for the split corresponding to the highest modularity value.
#' @return `cluster_walktrap()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Pascal Pons (<http://psl.pons.free.fr/>) and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the R and igraph interface
#' @seealso See [communities()] on getting the actual membership
#' vector, merge matrix, modularity score, etc.
#'
#' [modularity()] and [cluster_fast_greedy()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()], [cluster_louvain()],
#' and [cluster_leiden()] for other community detection
#' methods.
#' @references Pascal Pons, Matthieu Latapy: Computing communities in large
#' networks using random walks, https://arxiv.org/abs/physics/0512106
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' cluster_walktrap(g)
#'
cluster_walktrap <- function(graph, weights = NULL, steps = 4,
merges = TRUE, modularity = TRUE,
membership = TRUE) {
ensure_igraph(graph)
if (membership && !modularity) {
modularity <- TRUE
}
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && !any(is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_walktrap_community, graph, weights, as.numeric(steps),
as.logical(merges), as.logical(modularity), as.logical(membership)
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "walktrap"
if (!is.null(res$membership)) {
res$membership <- res$membership + 1
}
if (!is.null(res$merges)) {
res$merges <- res$merges + 1
}
class(res) <- "communities"
res
}
#' Community structure detection based on edge betweenness
#'
#' Community structure detection based on the betweenness of the edges
#' in the network. This method is also known as the Girvan-Newman
#' algorithm.
#'
#' The idea behind this method is that the betweenness of the edges connecting
#' two communities is typically high, as many of the shortest paths between
#' vertices in separate communities pass through them. The algorithm
#' successively removes edges with the highest betweenness, recalculating
#' betweenness values after each removal. This way eventually the network splits
#' into two components, then one of these components splits again, and so on,
#' until all edges are removed. The resulting hierarhical partitioning of the
#' vertices can be encoded as a dendrogram.
#'
#' `cluster_edge_betweenness()` returns various information collected
#' through the run of the algorithm. Specifically, `removed.edges` contains
#' the edge IDs in order of the edges' removal; `edge.betweenness` contains
#' the betweenness of each of these at the time of their removal; and
#' `bridges` contains the IDs of edges whose removal caused a split.
#'
#' @param graph The graph to analyze.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. Edge weights
#' are used to calculate weighted edge betweenness. This means that edges are
#' interpreted as distances, not as connection strengths.
#' @param directed Logical constant, whether to calculate directed edge
#' betweenness for directed graphs. It is ignored for undirected graphs.
#' @param edge.betweenness Logical constant, whether to return the edge
#' betweenness of the edges at the time of their removal.
#' @param merges Logical constant, whether to return the merge matrix
#' representing the hierarchical community structure of the network. This
#' argument is called `merges`, even if the community structure algorithm
#' itself is divisive and not agglomerative: it builds the tree from top to
#' bottom. There is one line for each merge (i.e. split) in matrix, the first
#' line is the first merge (last split). The communities are identified by
#' integer number starting from one. Community ids smaller than or equal to
#' \eqn{N}, the number of vertices in the graph, belong to singleton
#' communities, i.e. individual vertices. Before the first merge we have \eqn{N}
#' communities numbered from one to \eqn{N}. The first merge, the first line of
#' the matrix creates community \eqn{N+1}, the second merge creates community
#' \eqn{N+2}, etc.
#' @param bridges Logical constant, whether to return a list the edge removals
#' which actually splitted a component of the graph.
#' @param modularity Logical constant, whether to calculate the maximum
#' modularity score, considering all possibly community structures along the
#' edge-betweenness based edge removals.
#' @param membership Logical constant, whether to calculate the membership
#' vector corresponding to the highest possible modularity score.
#' @return `cluster_edge_betweenness()` returns a
#' [communities()] object, please see the [communities()]
#' manual page for details.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [edge_betweenness()] for the definition and calculation
#' of the edge betweenness, [cluster_walktrap()],
#' [cluster_fast_greedy()],
#' [cluster_leading_eigen()] for other community detection
#' methods.
#'
#' See [communities()] for extracting the results of the community
#' detection.
#' @references M Newman and M Girvan: Finding and evaluating community
#' structure in networks, *Physical Review E* 69, 026113 (2004)
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 2, directed = FALSE)
#' eb <- cluster_edge_betweenness(g)
#'
#' g <- make_full_graph(10) %du% make_full_graph(10)
#' g <- add_edges(g, c(1, 11))
#' eb <- cluster_edge_betweenness(g)
#' eb
#'
cluster_edge_betweenness <- function(graph, weights = NULL,
directed = TRUE,
edge.betweenness = TRUE,
merges = TRUE, bridges = TRUE,
modularity = TRUE,
membership = TRUE) {
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_community_edge_betweenness, graph, weights,
as.logical(directed),
as.logical(edge.betweenness),
as.logical(merges), as.logical(bridges),
as.logical(modularity), as.logical(membership)
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "edge betweenness"
res$membership <- res$membership + 1
res$merges <- res$merges + 1
res$removed.edges <- res$removed.edges + 1
res$bridges <- res$bridges + 1
class(res) <- "communities"
res
}
#' Community structure via greedy optimization of modularity
#'
#' This function tries to find dense subgraph, also called communities in
#' graphs via directly optimizing a modularity score.
#'
#' This function implements the fast greedy modularity optimization algorithm
#' for finding community structure, see A Clauset, MEJ Newman, C Moore: Finding
#' community structure in very large networks,
#' http://www.arxiv.org/abs/cond-mat/0408187 for the details.
#'
#' @param graph The input graph
#' @param merges Logical scalar, whether to return the merge matrix.
#' @param modularity Logical scalar, whether to return a vector containing the
#' modularity after each merge.
#' @param membership Logical scalar, whether to calculate the membership vector
#' corresponding to the maximum modularity score, considering all possible
#' community structures along the merges.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @return `cluster_fast_greedy()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the R interface.
#' @seealso [communities()] for extracting the results.
#'
#' See also [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()] and
#' [cluster_edge_betweenness()], [cluster_louvain()]
#' [cluster_leiden()] for other methods.
#' @references A Clauset, MEJ Newman, C Moore: Finding community structure in
#' very large networks, http://www.arxiv.org/abs/cond-mat/0408187
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' fc <- cluster_fast_greedy(g)
#' membership(fc)
#' sizes(fc)
#'
cluster_fast_greedy <- function(graph, merges = TRUE, modularity = TRUE,
membership = TRUE, weights = NULL) {
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_community_fastgreedy, graph, as.logical(merges),
as.logical(modularity), as.logical(membership), weights
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$algorithm <- "fast greedy"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
res$merges <- res$merges + 1
class(res) <- "communities"
res
}
igraph.i.levc.arp <- function(externalP, externalE) {
f <- function(v) {
v <- as.numeric(v)
.Call(R_igraph_i_levc_arp, externalP, externalE, v)
}
f
}
#' Community structure detecting based on the leading eigenvector of the
#' community matrix
#'
#' This function tries to find densely connected subgraphs in a graph by
#' calculating the leading non-negative eigenvector of the modularity matrix of
#' the graph.
#'
#' The function documented in these section implements the \sQuote{leading
#' eigenvector} method developed by Mark Newman, see the reference below.
#'
#' The heart of the method is the definition of the modularity matrix,
#' `B`, which is `B=A-P`, `A` being the adjacency matrix of the
#' (undirected) network, and `P` contains the probability that certain
#' edges are present according to the \sQuote{configuration model}. In other
#' words, a `P[i,j]` element of `P` is the probability that there is
#' an edge between vertices `i` and `j` in a random network in which
#' the degrees of all vertices are the same as in the input graph.
#'
#' The leading eigenvector method works by calculating the eigenvector of the
#' modularity matrix for the largest positive eigenvalue and then separating
#' vertices into two community based on the sign of the corresponding element
#' in the eigenvector. If all elements in the eigenvector are of the same sign
#' that means that the network has no underlying comuunity structure. Check
#' Newman's paper to understand why this is a good method for detecting
#' community structure.
#'
#' @param graph The input graph. Should be undirected as the method needs a
#' symmetric matrix.
#' @param steps The number of steps to take, this is actually the number of
#' tries to make a step. It is not a particularly useful parameter.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param start `NULL`, or a numeric membership vector, giving the start
#' configuration of the algorithm.
#' @param options A named list to override some ARPACK options.
#' @param callback If not `NULL`, then it must be callback function. This
#' is called after each iteration, after calculating the leading eigenvector of
#' the modularity matrix. See details below.
#' @param extra Additional argument to supply to the callback function.
#' @param env The environment in which the callback function is evaluated.
#' @return `cluster_leading_eigen()` returns a named list with the
#' following members: \item{membership}{The membership vector at the end of the
#' algorithm, when no more splits are possible.} \item{merges}{The merges
#' matrix starting from the state described by the `membership` member.
#' This is a two-column matrix and each line describes a merge of two
#' communities, the first line is the first merge and it creates community
#' \sQuote{`N`}, `N` is the number of initial communities in the
#' graph, the second line creates community `N+1`, etc. }
#' \item{options}{Information about the underlying ARPACK computation, see
#' [arpack()] for details. }
#' @section Callback functions: The `callback` argument can be used to
#' supply a function that is called after each eigenvector calculation. The
#' following arguments are supplied to this function: \describe{
#' \item{membership}{The actual membership vector, with zero-based indexing.}
#' \item{community}{The community that the algorithm just tried to split,
#' community numbering starts with zero here.}
#' \item{value}{The eigenvalue belonging to the leading eigenvector the
#' algorithm just found.}
#' \item{vector}{The leading eigenvector the algorithm just found.}
#' \item{multiplier}{An R function that can be used to multiple the actual
#' modularity matrix with an arbitrary vector. Supply the vector as an
#' argument to perform this multiplication. This function can be used
#' with ARPACK.}
#' \item{extra}{The `extra` argument that was passed to
#' `cluster_leading_eigen()`. }
#' The callback function should return a scalar number. If this number
#' is non-zero, then the clustering is terminated.
#' }
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [modularity()], [cluster_walktrap()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()], [as.dendrogram()]
#' @references MEJ Newman: Finding community structure using the eigenvectors
#' of matrices, Physical Review E 74 036104, 2006.
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' lec <- cluster_leading_eigen(g)
#' lec
#'
#' cluster_leading_eigen(g, start = membership(lec))
#'
cluster_leading_eigen <- function(graph, steps = -1, weights = NULL,
start = NULL,
options = arpack_defaults(),
callback = NULL, extra = NULL,
env = parent.frame()) {
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
"cluster_leading_eigen(options = 'must be a list')",
details = c("`arpack_defaults()` is now a function, use `options = arpack_defaults()` instead of `options = arpack_defaults`.")
)
options <- options()
}
# Argument checks
ensure_igraph(graph)
steps <- as.numeric(steps)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
if (!is.null(start)) {
start <- as.numeric(start) - 1
}
options <- modify_list(arpack_defaults(), options)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(
R_igraph_community_leading_eigenvector, graph, steps,
weights, options, start, callback, extra, env,
environment(igraph.i.levc.arp)
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$algorithm <- "leading eigenvector"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
res$merges <- res$merges + 1
res$history <- res$history + 1
class(res) <- "communities"
res
}
#' Finding communities based on propagating labels
#'
#' This is a fast, nearly linear time algorithm for detecting community
#' structure in networks. In works by labeling the vertices with unique labels
#' and then updating the labels by majority voting in the neighborhood of the
#' vertex.
#'
#' This function implements the community detection method described in:
#' Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time algorithm to
#' detect community structures in large-scale networks. Phys Rev E 76, 036106.
#' (2007). This version extends the original method by the ability to take edge
#' weights into consideration and also by allowing some labels to be fixed.
#'
#' From the abstract of the paper: \dQuote{In our algorithm every node is
#' initialized with a unique label and at every step each node adopts the label
#' that most of its neighbors currently have. In this iterative process densely
#' connected groups of nodes form a consensus on a unique label to form
#' communities.}
#'
#' @param graph The input graph. Note that the algorithm wsa originally
#' defined for undirected graphs. You are advised to set \sQuote{mode} to
#' `all` if you pass a directed graph here to treat it as
#' undirected.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @inheritParams rlang::args_dots_empty
#' @param mode Logical, whether to consider edge directions for the label propagation,
#' and if so, in which direction the labels should propagate. Ignored for undirected graphs.
#' "all" means to ignore edge directions (even in directed graphs).
#' "out" means to propagate labels along the natural direction of the edges.
#' "in" means to propagate labels backwards (i.e. from head to tail).
#' @param initial The initial state. If `NULL`, every vertex will have a
#' different label at the beginning. Otherwise it must be a vector with an
#' entry for each vertex. Non-negative values denote different labels, negative
#' entries denote vertices without labels.
#' @param fixed Logical vector denoting which labels are fixed. Of course this
#' makes sense only if you provided an initial state, otherwise this element
#' will be ignored. Also note that vertices without labels cannot be fixed.
#' @return `cluster_label_prop()` returns a
#' [communities()] object, please see the [communities()]
#' manual page for details.
#' @author Tamas Nepusz \email{ntamas@@gmail.com} for the C implementation,
#' Gabor Csardi \email{csardi.gabor@@gmail.com} for this manual page.
#' @seealso [communities()] for extracting the actual results.
#'
#' [cluster_fast_greedy()], [cluster_walktrap()],
#' [cluster_spinglass()], [cluster_louvain()] and
#' [cluster_leiden()] for other community detection methods.
#' @references Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time
#' algorithm to detect community structures in large-scale networks. *Phys
#' Rev E* 76, 036106. (2007)
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(10, 5 / 10) %du% sample_gnp(9, 5 / 9)
#' g <- add_edges(g, c(1, 12))
#' cluster_label_prop(g)
#'
cluster_label_prop <- function(
graph,
weights = NULL,
...,
mode = c("out", "in", "all"),
initial = NULL,
fixed = NULL) {
if (...length() > 0) {
lifecycle::deprecate_soft(
"1.6.0",
"cluster_label_prop(... = )",
details = "Arguments `initial` and `fixed` must be named."
)
dots <- list(...)
dots[["graph"]] <- graph
dots[["weights"]] <- weights
if (!is.null(initial)) {
dots[["initial"]] <- initial
}
if (!is.null(fixed)) {
dots[["fixed"]] <- fixed
}
return(inject(cluster_label_prop0(!!!dots)))
}
cluster_label_prop0(graph, weights, mode, initial, fixed)
}
cluster_label_prop0 <- function(
graph,
weights = NULL,
mode = c("out", "in", "all"),
initial = NULL,
fixed = NULL) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
if (!is.null(initial)) initial <- as.numeric(initial)
if (!is.null(fixed)) fixed <- as.logical(fixed)
directed <- switch(igraph.match.arg(mode), "out" = TRUE, "in" = TRUE, "all" = FALSE)
mode <- switch(igraph.match.arg(mode), "out" = 1L, "in" = 2L, "all" = 3L)
on.exit(.Call(R_igraph_finalizer))
# Function call
membership <- .Call(R_igraph_community_label_propagation, graph, mode, weights, initial, fixed)
res <- list()
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "label propagation"
res$membership <- membership + 1
res$modularity <- modularity(graph, res$membership, weights, directed)
class(res) <- "communities"
res
}
#' Finding community structure by multi-level optimization of modularity
#'
#' This function implements the multi-level modularity optimization algorithm
#' for finding community structure, see references below. It is based on the
#' modularity measure and a hierarchical approach.
#'
#' This function implements the multi-level modularity optimization algorithm
#' for finding community structure, see VD Blondel, J-L Guillaume, R Lambiotte
#' and E Lefebvre: Fast unfolding of community hierarchies in large networks,
#' <https://arxiv.org/abs/0803.0476> for the details.
#'
#' It is based on the modularity measure and a hierarchical approach.
#' Initially, each vertex is assigned to a community on its own. In every step,
#' vertices are re-assigned to communities in a local, greedy way: each vertex
#' is moved to the community with which it achieves the highest contribution to
#' modularity. When no vertices can be reassigned, each community is considered
#' a vertex on its own, and the process starts again with the merged
#' communities. The process stops when there is only a single vertex left or
#' when the modularity cannot be increased any more in a step. Since igraph 1.3,
#' vertices are processed in a random order.
#'
#' This function was contributed by Tom Gregorovic.
#'
#' @param graph The input graph.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param resolution Optional resolution parameter that allows the user to
#' adjust the resolution parameter of the modularity function that the algorithm
#' uses internally. Lower values typically yield fewer, larger clusters. The
#' original definition of modularity is recovered when the resolution parameter
#' is set to 1.
#' @return `cluster_louvain()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Tom Gregorovic, Tamas Nepusz \email{ntamas@@gmail.com}
#' @seealso See [communities()] for extracting the membership,
#' modularity scores, etc. from the results.
#'
#' Other community detection algorithms: [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()],
#' [cluster_label_prop()]
#' [cluster_leiden()]
#' @references Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
#' Etienne Lefebvre: Fast unfolding of communities in large networks. J. Stat.
#' Mech. (2008) P10008
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' # This is so simple that we will have only one level
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' cluster_louvain(g)
#'
cluster_louvain <- function(graph, weights = NULL, resolution = 1) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
resolution <- as.numeric(resolution)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_community_multilevel, graph, weights, resolution)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "multi level"
res$membership <- res$membership + 1
res$memberships <- res$memberships + 1
class(res) <- "communities"
res
}
#' Optimal community structure
#'
#' This function calculates the optimal community structure of a graph, by
#' maximizing the modularity measure over all possible partitions.
#'
#' This function calculates the optimal community structure for a graph, in
#' terms of maximal modularity score.
#'
#' The calculation is done by transforming the modularity maximization into an
#' integer programming problem, and then calling the GLPK library to solve
#' that. Please the reference below for details.
#'
#' Note that modularity optimization is an NP-complete problem, and all known
#' algorithms for it have exponential time complexity. This means that you
#' probably don't want to run this function on larger graphs. Graphs with up to
#' fifty vertices should be fine, graphs with a couple of hundred vertices
#' might be possible.
#'
#' @section Examples:
#' \preformatted{
#'
#' ## Zachary's karate club
#' g <- make_graph("Zachary")
#'
#' ## We put everything into a big 'try' block, in case
#' ## igraph was compiled without GLPK support
#'
#' ## The calculation only takes a couple of seconds
#' oc <- cluster_optimal(g)
#'
#' ## Double check the result
#' print(modularity(oc))
#' print(modularity(g, membership(oc)))
#'
#' ## Compare to the greedy optimizer
#' fc <- cluster_fast_greedy(g)
#' print(modularity(fc))
#' }
#'
#' @param graph The input graph. Edge directions are ignored for directed
#' graphs.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @return `cluster_optimal()` returns a [communities()] object,
#' please see the [communities()] manual page for details.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [communities()] for the documentation of the result,
#' [modularity()]. See also [cluster_fast_greedy()] for a
#' fast greedy optimizer.
#' @references Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke,
#' Martin Hoefer, Zoran Nikoloski, Dorothea Wagner: On Modularity Clustering,
#' *IEEE Transactions on Knowledge and Data Engineering* 20(2):172-188,
#' 2008.
#' @family community
#' @export
#' @keywords graphs
cluster_optimal <- function(graph, weights = NULL) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_community_optimal_modularity, graph, weights)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "optimal"
res$membership <- res$membership + 1
class(res) <- "communities"
res
}
#' Infomap community finding
#'
#' Find community structure that minimizes the expected description length of a
#' random walker trajectory. If the graph is directed, edge directions will
#' be taken into account.
#'
#' Please see the details of this method in the references given below.
#'
#' @param graph The input graph. Edge directions will be taken into account.
#' @param e.weights If not `NULL`, then a numeric vector of edge weights.
#' The length must match the number of edges in the graph. By default the
#' \sQuote{`weight`} edge attribute is used as weights. If it is not
#' present, then all edges are considered to have the same weight.
#' Larger edge weights correspond to stronger connections.
#' @param v.weights If not `NULL`, then a numeric vector of vertex
#' weights. The length must match the number of vertices in the graph. By
#' default the \sQuote{`weight`} vertex attribute is used as weights. If
#' it is not present, then all vertices are considered to have the same weight.
#' A larger vertex weight means a larger probability that the random surfer
#' jumps to that vertex.
#' @param nb.trials The number of attempts to partition the network (can be any
#' integer value equal or larger than 1).
#' @param modularity Logical scalar, whether to calculate the modularity score
#' of the detected community structure.
#' @return `cluster_infomap()` returns a [communities()] object,
#' please see the [communities()] manual page for details.
#' @author Martin Rosvall wrote the original C++ code. This was ported to
#' be more igraph-like by Emmanuel Navarro. The R interface and
#' some cosmetics was done by Gabor Csardi \email{csardi.gabor@@gmail.com}.
#' @seealso Other community finding methods and [communities()].
#' @references The original paper: M. Rosvall and C. T. Bergstrom, Maps of
#' information flow reveal community structure in complex networks, *PNAS*
#' 105, 1118 (2008) \doi{10.1073/pnas.0706851105}, <https://arxiv.org/abs/0707.0609>
#'
#' A more detailed paper: M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map
#' equation, *Eur. Phys. J. Special Topics* 178, 13 (2009).
#' \doi{10.1140/epjst/e2010-01179-1}, <https://arxiv.org/abs/0906.1405>.
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' ## Zachary's karate club
#' g <- make_graph("Zachary")
#'
#' imc <- cluster_infomap(g)
#' membership(imc)
#' communities(imc)
#'
cluster_infomap <- function(graph, e.weights = NULL, v.weights = NULL,
nb.trials = 10, modularity = TRUE) {
# Argument checks
ensure_igraph(graph)
if (is.null(e.weights) && "weight" %in% edge_attr_names(graph)) {
e.weights <- E(graph)$weight
}
if (!is.null(e.weights) && any(!is.na(e.weights))) {
e.weights <- as.numeric(e.weights)
} else {
e.weights <- NULL
}
if (is.null(v.weights) && "weight" %in% vertex_attr_names(graph)) {
v.weights <- V(graph)$weight
}
if (!is.null(v.weights) && any(!is.na(v.weights))) {
v.weights <- as.numeric(v.weights)
} else {
v.weights <- NULL
}
nb.trials <- as.numeric(nb.trials)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(
R_igraph_community_infomap, graph, e.weights,
v.weights, nb.trials
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "infomap"
res$membership <- res$membership + 1
if (modularity) {
res$modularity <- modularity(graph, res$membership, weights = e.weights)
}
class(res) <- "communities"
res
}
#' @rdname communities
#' @method plot communities
#' @export
#' @importFrom graphics plot
plot.communities <- function(x, y,
col = membership(x),
mark.groups = communities(x),
edge.color = c("black", "red")[crossing(x, y) + 1],
...) {
plot(y,
vertex.color = col, mark.groups = mark.groups,
edge.color = edge.color,
...
)
}
#' @rdname plot_dendrogram.communities
#' @export
plot_dendrogram <- function(x, mode = igraph_opt("dend.plot.type"), ...) {
UseMethod("plot_dendrogram")
}
#' Community structure dendrogram plots
#'
#' Plot a hierarchical community structure as a dendrogram.
#'
#' `plot_dendrogram()` supports three different plotting functions, selected via
#' the `mode` argument. By default the plotting function is taken from the
#' `dend.plot.type` igraph option, and it has for possible values:
#' \itemize{ \item `auto` Choose automatically between the plotting
#' functions. As `plot.phylo` is the most sophisticated, that is choosen,
#' whenever the `ape` package is available. Otherwise `plot.hclust`
#' is used. \item `phylo` Use `plot.phylo` from the `ape`
#' package. \item `hclust` Use `plot.hclust` from the `stats`
#' package. \item `dendrogram` Use `plot.dendrogram` from the
#' `stats` package. }
#'
#' The different plotting functions take different sets of arguments. When
#' using `plot.phylo` (`mode="phylo"`), we have the following syntax:
#' \preformatted{
#' plot_dendrogram(x, mode="phylo", colbar = palette(),
#' edge.color = NULL, use.edge.length = FALSE, \dots)
#' } The extra arguments not documented above: \itemize{
#' \item `colbar` Color bar for the edges.
#' \item `edge.color` Edge colors. If `NULL`, then the
#' `colbar` argument is used.
#' \item `use.edge.length` Passed to `plot.phylo`.
#' \item `dots` Attitional arguments to pass to `plot.phylo`.
#' }
#'
#' The syntax for `plot.hclust` (`mode="hclust"`): \preformatted{
#' plot_dendrogram(x, mode="hclust", rect = 0, colbar = palette(),
#' hang = 0.01, ann = FALSE, main = "", sub = "", xlab = "",
#' ylab = "", \dots)
#' } The extra arguments not documented above: \itemize{
#' \item `rect` A numeric scalar, the number of groups to mark on
#' the dendrogram. The dendrogram is cut into exactly `rect`
#' groups and they are marked via the `rect.hclust` command. Set
#' this to zero if you don't want to mark any groups.
#' \item `colbar` The colors of the rectangles that mark the
#' vertex groups via the `rect` argument.
#' \item `hang` Where to put the leaf nodes, this corresponds to the
#' `hang` argument of `plot.hclust`.
#' \item `ann` Whether to annotate the plot, the `ann`
#' argument of `plot.hclust`.
#' \item `main` The main title of the plot, the `main` argument
#' of `plot.hclust`.
#' \item `sub` The sub-title of the plot, the `sub` argument of
#' `plot.hclust`.
#' \item `xlab` The label on the horizontal axis, passed to
#' `plot.hclust`.
#' \item `ylab` The label on the vertical axis, passed to
#' `plot.hclust`.
#' \item `dots` Attitional arguments to pass to `plot.hclust`.
#' }
#'
#' The syntax for `plot.dendrogram` (`mode="dendrogram"`):
#' \preformatted{
#' plot_dendrogram(x, \dots)
#' } The extra arguments are simply passed to [as.dendrogram()].
#'
#' @param x An object containing the community structure of a graph. See
#' [communities()] for details.
#' @param mode Which dendrogram plotting function to use. See details below.
#' @param \dots Additional arguments to supply to the dendrogram plotting
#' function.
#' @param use.modularity Logical scalar, whether to use the modularity values
#' to define the height of the branches.
#' @param palette The color palette to use for colored plots.
#' @return Returns whatever the return value was from the plotting function,
#' `plot.phylo`, `plot.dendrogram` or `plot.hclust`.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @method plot_dendrogram communities
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' karate <- make_graph("Zachary")
#' fc <- cluster_fast_greedy(karate)
#' plot_dendrogram(fc)
#'
plot_dendrogram.communities <- function(x,
mode = igraph_opt("dend.plot.type"), ...,
use.modularity = FALSE,
palette = categorical_pal(8)) {
mode <- igraph.match.arg(mode, c("auto", "phylo", "hclust", "dendrogram"))
old_palette <- palette(palette)
on.exit(palette(old_palette), add = TRUE)
if (mode == "auto") {
have_ape <- requireNamespace("ape", quietly = TRUE)
mode <- if (have_ape) "phylo" else "hclust"
}
if (mode == "hclust") {
dendPlotHclust(x, use.modularity = use.modularity, ...)
} else if (mode == "dendrogram") {
dendPlotDendrogram(x, use.modularity = use.modularity, ...)
} else if (mode == "phylo") {
dendPlotPhylo(x, use.modularity = use.modularity, ...)
}
}
#' @importFrom grDevices palette
#' @importFrom graphics plot
#' @importFrom stats rect.hclust
dendPlotHclust <- function(communities, rect = length(communities),
colbar = palette(), hang = -1, ann = FALSE,
main = "", sub = "", xlab = "", ylab = "", ...,
use.modularity = FALSE) {
hc <- as.hclust(communities, hang = hang, use.modularity = use.modularity)
ret <- plot(hc,
hang = hang, ann = ann, main = main, sub = sub, xlab = xlab,
ylab = ylab, ...
)
if (rect > 0) {
rect.hclust(hc, k = rect, border = colbar)
}
invisible(ret)
}
#' @importFrom graphics plot
dendPlotDendrogram <- function(communities, hang = -1, ...,
use.modularity = FALSE) {
plot(
as.dendrogram(communities, hang = hang, use.modularity = use.modularity),
...
)
}
#' @importFrom grDevices palette
#' @importFrom graphics plot
dendPlotPhylo <- function(communities, colbar = palette(),
col = colbar[membership(communities)],
mark.groups = communities(communities),
use.modularity = FALSE,
edge.color = "#AAAAAAFF",
edge.lty = c(1, 2), ...) {
phy <- ape::as.phylo(communities, use.modularity = use.modularity)
getedges <- function(tip) {
repeat {
ee <- which(!phy$edge[, 1] %in% tip & phy$edge[, 2] %in% tip)
if (length(ee) <= 1) {
break
}
tip <- c(tip, unique(phy$edge[ee, 1]))
}
ed <- which(phy$edge[, 1] %in% tip & phy$edge[, 2] %in% tip)
eds <- phy$edge[ed, 1]
good <- which(phy$edge[ed, 1] %in% which(tabulate(eds) != 1))
ed[good]
}
gredges <- lapply(mark.groups, getedges)
if (length(mark.groups) > 0) {
ecol <- rep(edge.color, nrow(phy$edge))
for (gr in seq_along(gredges)) {
ecol[gredges[[gr]]] <- colbar[gr]
}
} else {
ecol <- edge.color
}
elty <- rep(edge.lty[2], nrow(phy$edge))
elty[unlist(gredges)] <- edge.lty[1]
plot(phy, edge.color = ecol, edge.lty = elty, tip.color = col, ...)
}
#' Compares community structures using various metrics
#'
#' This function assesses the distance between two community structures.
#'
#'
#' @aliases compare.communities compare.membership
#' @param comm1 A [communities()] object containing a community
#' structure; or a numeric vector, the membership vector of the first community
#' structure. The membership vector should contain the community id of each
#' vertex, the numbering of the communities starts with one.
#' @param comm2 A [communities()] object containing a community
#' structure; or a numeric vector, the membership vector of the second
#' community structure, in the same format as for the previous argument.
#' @param method Character scalar, the comparison method to use. Possible
#' values: \sQuote{vi} is the variation of information (VI) metric of Meila
#' (2003), \sQuote{nmi} is the normalized mutual information measure proposed
#' by Danon et al. (2005), \sQuote{split.join} is the split-join distance of
#' can Dongen (2000), \sQuote{rand} is the Rand index of Rand (1971),
#' \sQuote{adjusted.rand} is the adjusted Rand index by Hubert and Arabie
#' (1985).
#' @return A real number.
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @references Meila M: Comparing clusterings by the variation of information.
#' In: Scholkopf B, Warmuth MK (eds.). *Learning Theory and Kernel
#' Machines: 16th Annual Conference on Computational Learning Theory and 7th
#' Kernel Workshop*, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in
#' Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1.
#'
#' Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure
#' identification. *J Stat Mech* P09008, 2005.
#'
#' van Dongen S: Performance criteria for graph clustering and Markov cluster
#' experiments. Technical Report INS-R0012, National Research Institute for
#' Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000.
#'
#' Rand WM: Objective criteria for the evaluation of clustering methods.
#' *J Am Stat Assoc* 66(336):846-850, 1971.
#'
#' Hubert L and Arabie P: Comparing partitions. *Journal of
#' Classification* 2:193-218, 1985.
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_graph("Zachary")
#' sg <- cluster_spinglass(g)
#' le <- cluster_leading_eigen(g)
#' compare(sg, le, method = "rand")
#' compare(membership(sg), membership(le))
#'
compare <- function(comm1, comm2, method = c(
"vi", "nmi",
"split.join", "rand",
"adjusted.rand"
)) {
UseMethod("compare")
}
#' @method compare communities
#' @family community
#' @export
compare.communities <- function(comm1, comm2,
method = c(
"vi", "nmi", "split.join", "rand",
"adjusted.rand"
)) {
i_compare(comm1, comm2, method)
}
#' @method compare membership
#' @family community
#' @export
compare.membership <- function(comm1, comm2,
method = c(
"vi", "nmi", "split.join", "rand",
"adjusted.rand"
)) {
i_compare(comm1, comm2, method)
}
#' @method compare default
#' @family community
#' @export
compare.default <- compare.membership
i_compare <- function(comm1, comm2, method = c(
"vi", "nmi", "split.join",
"rand", "adjusted.rand"
)) {
comm1 <- if (inherits(comm1, "communities")) {
as.numeric(membership(comm1))
} else {
as.numeric(as.factor(comm1))
}
comm2 <- if (inherits(comm2, "communities")) {
as.numeric(membership(comm2))
} else {
as.numeric(as.factor(comm2))
}
method <- switch(igraph.match.arg(method),
vi = 0L,
nmi = 1L,
split.join = 2L,
rand = 3L,
adjusted.rand = 4L
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_compare_communities, comm1, comm2, method)
res
}
#' Split-join distance of two community structures
#'
#' The split-join distance between partitions A and B is the sum of the
#' projection distance of A from B and the projection distance of B from
#' A. The projection distance is an asymmetric measure and it is defined as
#' follows:
#'
#' First, each set in partition A is evaluated against all sets in
#' partition B. For each set in partition A, the best matching set in
#' partition B is found and the overlap size is calculated. (Matching is
#' quantified by the size of the overlap between the two sets). Then, the
#' maximal overlap sizes for each set in A are summed together and
#' subtracted from the number of elements in A.
#'
#' The split-join distance will be returned as two numbers, the first is
#' the projection distance of the first partition from the
#' second, while the second number is the projection distance of the second
#' partition from the first. This makes it easier to detect whether a
#' partition is a subpartition of the other, since in this case, the
#' corresponding distance will be zero.
#'
#' @param comm1 The first community structure.
#' @param comm2 The second community structure.
#' @return Two integer numbers, see details below.
#'
#' @references
#' van Dongen S: Performance criteria for graph clustering and Markov
#' cluster experiments. Technical Report INS-R0012, National Research
#' Institute for Mathematics and Computer Science in the Netherlands,
#' Amsterdam, May 2000.
#'
#' @family community
#' @export
split_join_distance <- function(comm1, comm2) {
comm1 <- if (inherits(comm1, "communities")) {
as.numeric(membership(comm1))
} else {
as.numeric(comm1)
}
comm2 <- if (inherits(comm2, "communities")) {
as.numeric(membership(comm2))
} else {
as.numeric(comm2)
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_split_join_distance, comm1, comm2)
unlist(res)
}
#' Groups of a vertex partitioning
#'
#' Create a list of vertex groups from some graph clustering or community
#' structure.
#'
#' Currently two methods are defined for this function. The default method
#' works on the output of [components()]. (In fact it works on any
#' object that is a list with an entry called `membership`.)
#'
#' The second method works on [communities()] objects.
#'
#' @aliases groups.default groups.communities
#' @param x Some object that represents a grouping of the vertices. See details
#' below.
#' @return A named list of numeric or character vectors. The names are just
#' numbers that refer to the groups. The vectors themselves are numeric or
#' symbolic vertex ids.
#' @seealso [components()] and the various community finding
#' functions.
#' @examples
#' g <- make_graph("Zachary")
#' fgc <- cluster_fast_greedy(g)
#' groups(fgc)
#'
#' g2 <- make_ring(10) + make_full_graph(5)
#' groups(components(g2))
#' @family community
#' @export
groups <- function(x) {
UseMethod("groups")
}
#' @method groups default
#' @family community
#' @export
groups.default <- function(x) {
vids <- names(x$membership)
if (is.null(vids)) vids <- seq_along(x$membership)
tapply(vids, x$membership, simplify = FALSE, function(x) x)
}
#' @method groups communities
#' @family community
#' @export
groups.communities <- function(x) {
m <- membership(x)
groups.default(list(membership = m))
}
#' @rdname communities
#' @export
communities <- groups.communities
#' @method "[" communities
#' @family community
#' @export
`[.communities` <- function(x, i) {
groups(x)[i]
}
#' @method "[[" communities
#' @family community
#' @export
`[[.communities` <- function(x, i) {
groups(x)[[i]]
}
#' Contract several vertices into a single one
#'
#' This function creates a new graph, by merging several vertices into one. The
#' vertices in the new graph correspond to sets of vertices in the input graph.
#'
#' The attributes of the graph are kept. Graph and edge attributes are
#' unchanged, vertex attributes are combined, according to the
#' `vertex.attr.comb` parameter.
#'
#' @param graph The input graph, it can be directed or undirected.
#' @param mapping A numeric vector that specifies the mapping. Its elements
#' correspond to the vertices, and for each element the id in the new graph is
#' given.
#' @param vertex.attr.comb Specifies how to combine the vertex attributes in
#' the new graph. Please see [attribute.combination()] for details.
#' @return A new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @keywords graphs
#' @examples
#'
#' g <- make_ring(10)
#' g$name <- "Ring"
#' V(g)$name <- letters[1:vcount(g)]
#' E(g)$weight <- runif(ecount(g))
#'
#' g2 <- contract(g, rep(1:5, each = 2),
#' vertex.attr.comb = toString
#' )
#'
#' ## graph and edge attributes are kept, vertex attributes are
#' ## combined using the 'toString' function.
#' print(g2, g = TRUE, v = TRUE, e = TRUE)
#'
#' @export
#' @family functions for manipulating graph structure
#' @cdocs igraph_contract_vertices
contract <- contract_vertices_impl
#' Voronoi partitioning of a graph
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' This function partitions the vertices of a graph based on a set of generator
#' vertices. Each vertex is assigned to the generator vertex from (or to) which
#' it is closest.
#'
#' [groups()] may be used on the output of this function.
#'
#' @param graph The graph to partition into Voronoi cells.
#' @param generators The generator vertices of the Voronoi cells.
#' @param mode Character string. In directed graphs, whether to compute
#' distances from generator vertices to other vertices (`"out"`), to
#' generator vertices from other vertices (`"in"`), or ignore edge
#' directions entirely (`"all"`). Ignored in undirected graphs.
#' @param tiebreaker Character string that specifies what to do when a vertex
#' is at the same distance from multiple generators. `"random"` assigns
#' a minimal-distance generator randomly, `"first"` takes the first one,
#' and `"last"` takes the last one.
#' @inheritParams distances
#' @inheritParams rlang::args_dots_empty
#' @return A named list with two components:
#' \item{membership}{numeric vector giving the cluster id to which each vertex
#' belongs.}
#' \item{distances}{numeric vector giving the distance of each vertex from its
#' generator}
#' @seealso [distances()]
#' @examples
#'
#' g <- make_lattice(c(10,10))
#' clu <- voronoi_cells(g, c(25, 43, 67))
#' groups(clu)
#' plot(g, vertex.color=clu$membership)
#'
#' @export
#' @family community
#' @cdocs igraph_voronoi
voronoi_cells <- voronoi_impl
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.