Nothing
test_that("Multigam distr works", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
# Types
expect_s4_class(D, "Distribution")
expect_s4_class(D, "Multigam")
# Errors
expect_error(Multigam(-1, 2))
expect_error(Multigam(1, -2))
})
test_that("Multigam dpqr work", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
set.seed(1)
n <- 100L
x <- r(D)(n)
# Types
expect_true(is.function(d(D)))
expect_true(is.function(r(D)))
expect_true(is.numeric(d(D, x)))
expect_true(is.numeric(dmultigam(x, a, b, log = TRUE)))
# Values
expect_equal(d(D)(rep(0, length(a))), 0)
expect_equal(sum(x < 0), 0L)
# 2-Way Calls
expect_equal(d(D)(x[1, ]), dmultigam(x[1, ], shape = a, scale = b))
expect_equal(d(D)(x[1, ]), d(D, x[1, ]))
# Errors
expect_error(dmultigam(x, 1:3, -3))
expect_error(dmultigam(x, c(1, 2, -3), 3))
expect_error(dmultigam(x, 1:5, 3))
})
test_that("Multigam moments work", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
# Types
expect_true(is.list(moments(D)))
expect_true(is.numeric(mean(D)))
expect_true(is.numeric(var(D)))
expect_true(is.numeric(finf(D)))
})
test_that("Multigam likelihood works", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
set.seed(1)
n <- 100L
x <- r(D)(n)
# Types
expect_true(is.numeric(llmultigam(x, shape = a, scale = b)))
# 2-Way Calls
expect_equal(llmultigam(x, shape = a, scale = b), ll(D, x))
expect_equal(ll(D)(x), ll(D, x))
# ll and lloptim convergence to a0 comparison
method <- "L-BFGS-B"
lower <- 1e-5
upper <- Inf
k <- ncol(x)
logz <- colMeans(log(fd(x)))
xk <- mean(x[, k])
tx <- c(logz, xk)
par1 <- optim(par = sum(same(D, x)$shape),
fn = lloptim,
gr = dlloptim,
tx = tx,
distr = D,
method = method,
lower = lower,
upper = upper,
control = list(fnscale = -1))$par
b <- xk / par1
a <- idigamma(logz - log(b))
par1 <- c(a, b)
par2 <- optim(par = unlist(same(D, x)),
fn = function(par, x, distr) {
ll(Multigam(par[seq_along(a)], par[length(a) + 1]), x)
},
x = x,
method = method,
lower = lower,
upper = upper,
control = list(fnscale = -1))$par
expect_equal(par1, unname(par2), tolerance = 0.01)
})
test_that("Multigam estim works", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
set.seed(1)
n <- 100L
x <- r(D)(n)
# Types
expect_true(is.list(emultigam(x, type = "mle")))
expect_true(is.list(emultigam(x, type = "me")))
expect_true(is.list(emultigam(x, type = "same")))
# 2-Way Calls
expect_equal(emultigam(x, type = "mle"), e(D, x, type = "mle"))
expect_equal(emultigam(x, type = "me"), e(D, x, type = "me"))
expect_equal(emultigam(x, type = "same"), e(D, x, type = "same"))
skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true",
"Skipping extended test unless JOKER_EXTENDED_TESTS='true'")
# Simulations
d <- test_consistency("me", D)
expect_equal(d$prm_true, d$prm_est, tolerance = 0.05)
d <- test_consistency("mle", D)
expect_equal(d$prm_true, d$prm_est, tolerance = 0.05)
d <- test_consistency("same", D)
expect_equal(d$prm_true, d$prm_est, tolerance = 0.05)
# Errors
expect_error(e(D, x, type = "xxx"))
expect_error(e(D, x, type = "mle", par0 = "xxx"))
})
test_that("Multigam avar works", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
# Types
expect_true(is.numeric(vmultigam(a, b, type = "mle")))
expect_true(is.numeric(vmultigam(a, b, type = "me")))
expect_true(is.numeric(vmultigam(a, b, type = "same")))
# 2-Way Calls
expect_equal(vmultigam(a, b, type = "mle"), v(D, type = "mle"))
expect_equal(vmultigam(a, b, type = "me"), v(D, type = "me"))
expect_equal(vmultigam(a, b, type = "same"), v(D, type = "same"))
expect_equal(vmultigam(a, b, type = "mle"), avar_mle(D))
expect_equal(vmultigam(a, b, type = "me"), avar_me(D))
expect_equal(vmultigam(a, b, type = "same"), avar_same(D))
skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true",
"Skipping extended test unless JOKER_EXTENDED_TESTS='true'")
# Simulations
d <- test_avar("mle", D)
expect_equal(d$avar_true, d$avar_est, tolerance = 0.07)
d <- test_avar("me", D)
expect_equal(d$avar_true, d$avar_est, tolerance = 0.05)
d <- test_avar("same", D)
expect_equal(d$avar_true, d$avar_est, tolerance = 0.07)
# Errors
expect_error(v(D, type = "xxx"))
})
test_that("Multigam small metrics work", {
skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true",
"Skipping extended test unless JOKER_EXTENDED_TESTS='true'")
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
set.seed(1)
prm <- list(name = "shape",
pos = 1,
val = seq(0.5, 5, by = 0.5))
expect_no_error(
x <- small_metrics(D, prm,
est = c("mle", "me", "same"),
obs = c(20, 50),
sam = 1e2,
seed = 1,
bar = FALSE)
)
expect_no_error(
plot(x, save = TRUE, path = tempdir())
)
# Types
expect_s4_class(x, "SmallMetrics")
})
test_that("Multigam large metrics work", {
# Preliminaries
a <- 1:3
b <- 3
D <- Multigam(a, b)
set.seed(1)
prm <- list(name = "shape",
pos = 1,
val = seq(0.5, 5, by = 0.5))
expect_no_error(
x <- large_metrics(D, prm,
est = c("mle", "me", "same"))
)
expect_no_error(
plot(x, save = TRUE, path = tempdir())
)
# Types
expect_s4_class(x, "LargeMetrics")
prm <- list(name = "scale",
val = seq(0.5, 5, by = 0.5))
expect_no_error(
x <- large_metrics(D, prm,
est = c("mle", "me", "same"))
)
expect_no_error(
plot(x, save = TRUE, path = tempdir())
)
# Types
expect_s4_class(x, "LargeMetrics")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.