Nothing
#' Input layer
#'
#' Layer to be used as an entry point into a graph.
#'
#' @param shape Shape, not including the batch size. For instance,
#' `shape=c(32)` indicates that the expected input will be batches
#' of 32-dimensional vectors.
#' @param batch_shape Shape, including the batch size. For instance,
#' `shape = c(10,32)` indicates that the expected input will be batches
#' of 10 32-dimensional vectors. `batch_shape = list(NULL, 32)` indicates
#' batches of an arbitrary number of 32-dimensional vectors.
#' @param name An optional name string for the layer. Should be unique in a
#' model (do not reuse the same name twice). It will be autogenerated if it
#' isn't provided.
#' @param dtype The data type expected by the input, as a string (`float32`,
#' `float64`, `int32`...)
#' @param sparse Boolean, whether the placeholder created is meant to be sparse.
#' @param tensor Existing tensor to wrap into the `Input` layer. If set, the
#' layer will not create a placeholder tensor.
#' @param ragged A boolean specifying whether the placeholder to be created is
#' ragged. Only one of 'ragged' and 'sparse' can be `TRUE` In this case, values
#' of 'NULL' in the 'shape' argument represent ragged dimensions.
#'
#' @return A tensor
#'
#' @family core layers
#'
#' @export
layer_input <-
function(shape = NULL, batch_shape = NULL, name = NULL,
dtype = NULL, sparse = FALSE, tensor = NULL,
ragged = FALSE) {
args <- capture_args(match.call(),
list(shape = normalize_shape,
batch_shape = normalize_shape))
do.call(keras$layers$Input, args)
}
#' Add a densely-connected NN layer to an output
#'
#' Implements the operation: `output = activation(dot(input, kernel) + bias)`
#' where `activation` is the element-wise activation function passed as the
#' `activation` argument, `kernel` is a weights matrix created by the layer, and
#' `bias` is a bias vector created by the layer (only applicable if `use_bias`
#' is `TRUE`). Note: if the input to the layer has a rank greater than 2, then
#' it is flattened prior to the initial dot product with `kernel`.
#'
#' @inheritParams layer_input
#'
#' @param object What to compose the new `Layer` instance with. Typically a
#' Sequential model or a Tensor (e.g., as returned by `layer_input()`).
#' The return value depends on `object`. If `object` is:
#'
#' - missing or `NULL`, the `Layer` instance is returned.
#' - a `Sequential` model, the model with an additional layer is returned.
#' - a Tensor, the output tensor from `layer_instance(object)` is returned.
#'
#' @param units Positive integer, dimensionality of the output space.
#' @param activation Name of activation function to use. If you don't specify
#' anything, no activation is applied (ie. "linear" activation: a(x) = x).
#' @param use_bias Whether the layer uses a bias vector.
#' @param kernel_initializer Initializer for the `kernel` weights matrix.
#' @param bias_initializer Initializer for the bias vector.
#' @param kernel_regularizer Regularizer function applied to the `kernel`
#' weights matrix.
#' @param bias_regularizer Regularizer function applied to the bias vector.
#' @param activity_regularizer Regularizer function applied to the output of the
#' layer (its "activation")..
#' @param kernel_constraint Constraint function applied to the `kernel` weights
#' matrix.
#' @param bias_constraint Constraint function applied to the bias vector.
#' @param input_shape Dimensionality of the input (integer) not including the
#' samples axis. This argument is required when using this layer as the first
#' layer in a model.
#' @param batch_input_shape Shapes, including the batch size. For instance,
#' `batch_input_shape=c(10, 32)` indicates that the expected input will be
#' batches of 10 32-dimensional vectors. `batch_input_shape=list(NULL, 32)`
#' indicates batches of an arbitrary number of 32-dimensional vectors.
#' @param batch_size Fixed batch size for layer
#' @param trainable Whether the layer weights will be updated during training.
#' @param weights Initial weights for layer.
#'
#' @section Input and Output Shapes:
#'
#' Input shape: nD tensor with shape: `(batch_size, ..., input_dim)`. The most
#' common situation would be a 2D input with shape `(batch_size, input_dim)`.
#'
#' Output shape: nD tensor with shape: `(batch_size, ..., units)`. For
#' instance, for a 2D input with shape `(batch_size, input_dim)`, the output
#' would have shape `(batch_size, unit)`.
#'
#' @family core layers
#'
#' @export
layer_dense <- function(object, units, activation = NULL, use_bias = TRUE,
kernel_initializer = 'glorot_uniform', bias_initializer = 'zeros',
kernel_regularizer = NULL, bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, bias_constraint = NULL, input_shape = NULL,
batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
name = NULL, trainable = NULL, weights = NULL
) {
create_layer(keras$layers$Dense, object, list(
units = as.integer(units),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
))
}
#' Reshapes an output to a certain shape.
#'
#' @inheritParams layer_activation
#'
#' @param target_shape List of integers, does not include the samples dimension
#' (batch size).
#'
#' @section Input and Output Shapes:
#'
#' Input shape: Arbitrary, although all dimensions in the input shaped must be
#' fixed.
#'
#' Output shape: `(batch_size,) + target_shape`.
#'
#' @family core layers
#'
#' @export
layer_reshape <- function(object, target_shape, input_shape = NULL,
batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
name = NULL, trainable = NULL, weights = NULL) {
create_layer(keras$layers$Reshape, object, list(
target_shape = normalize_shape(target_shape),
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
))
}
#' Permute the dimensions of an input according to a given pattern
#'
#' @param dims List of integers. Permutation pattern, does not include the
#' samples dimension. Indexing starts at 1. For instance, `(2, 1)` permutes
#' the first and second dimension of the input.
#'
#' @inheritParams layer_activation
#'
#' @section Input and Output Shapes:
#'
#' Input shape: Arbitrary
#'
#' Output shape: Same as the input shape, but with the dimensions re-ordered
#' according to the specified pattern.
#'
#' @note Useful for e.g. connecting RNNs and convnets together.
#'
#' @family core layers
#'
#' @export
layer_permute <- function(object, dims, input_shape = NULL,
batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
name = NULL, trainable = NULL, weights = NULL) {
create_layer(keras$layers$Permute, object, list(
dims = as_integer_tuple(dims, force_tuple = TRUE),
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
))
}
#' Repeats the input n times.
#'
#' @inheritParams layer_dense
#'
#' @param n integer, repetition factor.
#'
#' @section Input shape: 2D tensor of shape `(num_samples, features)`.
#'
#' @section Output shape: 3D tensor of shape `(num_samples, n, features)`.
#'
#' @family core layers
#'
#' @export
layer_repeat_vector <- function(object, n,
batch_size = NULL, name = NULL, trainable = NULL, weights = NULL) {
create_layer(keras$layers$RepeatVector, object, list(
n = as.integer(n),
batch_size = as_nullable_integer(batch_size),
name = name,
trainable = trainable,
weights = weights
))
}
#' Wraps arbitrary expression as a layer
#'
#' @inheritParams layer_dense
#'
#' @param f The function to be evaluated. Takes input tensor as first
#' argument.
#' @param output_shape Expected output shape from the function (not required
#' when using TensorFlow back-end).
#' @param mask mask
#' @param arguments optional named list of keyword arguments to be passed to the
#' function.
#'
#' @section Input shape: Arbitrary. Use the keyword argument input_shape (list
#' of integers, does not include the samples axis) when using this layer as
#' the first layer in a model.
#'
#' @section Output shape: Arbitrary (based on tensor returned from the function)
#'
#' @family core layers
#'
#' @export
layer_lambda <- function(object, f, output_shape = NULL, mask = NULL, arguments = NULL,
input_shape = NULL, batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
name = NULL, trainable = NULL, weights = NULL) {
args <- list(
`function` = f,
mask = mask,
arguments = arguments,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
if (backend()$backend() %in% c("theano", "cntk"))
args$output_shape <- as_integer_tuple(output_shape, force_tuple = TRUE)
else if(!is.null(output_shape))
args$output_shape <- normalize_shape(output_shape)
create_layer(keras$layers$Lambda, object, args)
}
#' Layer that applies an update to the cost function based input activity.
#'
#' @inheritParams layer_dense
#'
#' @param l1 L1 regularization factor (positive float).
#' @param l2 L2 regularization factor (positive float).
#'
#' @section Input shape: Arbitrary. Use the keyword argument `input_shape` (list
#' of integers, does not include the samples axis) when using this layer as
#' the first layer in a model.
#'
#' @section Output shape: Same shape as input.
#'
#' @family core layers
#'
#' @export
layer_activity_regularization <- function(object, l1 = 0.0, l2 = 0.0, input_shape = NULL,
batch_input_shape = NULL, batch_size = NULL,
dtype = NULL, name = NULL, trainable = NULL,
weights = NULL) {
create_layer(keras$layers$ActivityRegularization, object, list(
l1 = l1,
l2 = l2,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
))
}
#' Masks a sequence by using a mask value to skip timesteps.
#'
#' For each timestep in the input tensor (dimension #1 in the tensor), if all
#' values in the input tensor at that timestep are equal to `mask_value`, then
#' the timestep will be masked (skipped) in all downstream layers (as long as
#' they support masking). If any downstream layer does not support masking yet
#' receives such an input mask, an exception will be raised.
#'
#' @inheritParams layer_dense
#'
#' @param mask_value float, mask value
#'
#' @family core layers
#'
#' @export
layer_masking <- function(object, mask_value = 0.0, input_shape = NULL,
batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
name = NULL, trainable = NULL, weights = NULL) {
create_layer(keras$layers$Masking, object, list(
mask_value = mask_value,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
))
}
#' Flattens an input
#'
#' Flatten a given input, does not affect the batch size.
#'
#' @inheritParams layer_activation
#'
#' @param data_format A string. one of `channels_last` (default) or
#' `channels_first`. The ordering of the dimensions in the inputs. The purpose
#' of this argument is to preserve weight ordering when switching a model from
#' one data format to another. `channels_last` corresponds to inputs with
#' shape `(batch, ..., channels)` while `channels_first` corresponds to inputs
#' with shape `(batch, channels, ...)`. It defaults to the `image_data_format`
#' value found in your Keras config file at `~/.keras/keras.json`. If you
#' never set it, then it will be "channels_last".
#'
#' @family core layers
#'
#' @export
layer_flatten <- function(object, data_format = NULL, input_shape = NULL, dtype = NULL,
name = NULL, trainable = NULL, weights = NULL) {
args <- list(
input_shape = normalize_shape(input_shape),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
if (keras_version() >= "2.2.0") {
args$data_format <- data_format
} else if (keras_version() >= "2.1.6") {
if (is.null(data_format))
data_format <- "channels_last"
args$data_format <- data_format
}
create_layer(keras$layers$Flatten, object, args)
}
as_integer <- function(x) {
if (is.numeric(x))
as.integer(x)
else
x
}
as_integer_tuple <- function(x, force_tuple = FALSE) {
if (is.null(x))
x
else if (is.list(x) || force_tuple)
tuple(as.list(as.integer(x)))
else
as.integer(x)
}
as_nullable_integer <- function(x) {
if (is.null(x))
x
else
as.integer(x)
}
as_layer_index <- function(x) {
if (is.null(x))
return(x)
x <- as.integer(x)
if (x == 0L)
stop("`index` for get_layer() is 1-based (0 was passed as the index)")
if (x > 0L)
x - 1L
else
x
}
# Helper function to normalize paths
normalize_path <- function(path) {
if (is.null(path))
NULL
else
normalizePath(path.expand(path), mustWork = FALSE)
}
# Helper function to coerce shape arguments to tuple
# tf$reshape()/k_reshape() doesn't accept a tf.TensorShape object
normalize_shape <- function(shape) {
# reflect NULL back
if (is.null(shape))
return(shape)
# if it's a list or a numeric vector then convert to integer
# NA's in are accepted as NULL
# also accept c(NA), as if it was a numeric
if (is.list(shape) || is.numeric(shape) ||
(is.logical(shape) && all(is.na(shape)))) {
shape <- lapply(shape, function(value) {
# Pass through python objects unmodified, only coerce R objects
# supplied shapes, e.g., to tf$random$normal, can be a list that's a mix
# of scalar integer tensors and regular integers
if (inherits(value, "python.builtin.object"))
return(value)
# accept NA,NA_integer_,NA_real_ as NULL
if ((is_scalar(value) && is.na(value)))
return(NULL)
if (!is.null(value))
as.integer(value)
else
NULL
})
}
if (inherits(shape, "tensorflow.python.framework.tensor_shape.TensorShape"))
shape <- as.list(shape$as_list()) # unpack for tuple()
# coerce to tuple so it's iterable
tuple(shape)
}
# @export
# format.python.builtin.object <- function(x, ...) {
# capture.output(print(x, ...))
# }
as_shape <- function(x) {
lapply(x, function(d) {
if (is.null(d))
NULL
else
as.integer(d)
})
}
#' Create a Keras Layer
#'
#' @param layer_class Python layer class or R6 class of type KerasLayer
#' @param object Object to compose layer with. This is either a
#' [keras_model_sequential()] to add the layer to, or another Layer which
#' this layer will call.
#' @param args List of arguments to layer constructor function
#'
#' @return A Keras layer
#'
#' @note The `object` parameter can be missing, in which case the
#' layer is created without a connection to an existing graph.
#'
#' @export
create_layer <- function(layer_class, object, args = list()) {
safe_to_drop_nulls <- c(
"input_shape",
"batch_input_shape",
"batch_size",
"dtype",
"name",
"trainable",
"weights"
)
for (nm in safe_to_drop_nulls)
args[[nm]] <- args[[nm]]
# convert custom constraints
constraint_args <- grepl("^.*_constraint$", names(args))
constraint_args <- names(args)[constraint_args]
for (arg in constraint_args)
args[[arg]] <- as_constraint(args[[arg]])
if (inherits(layer_class, "R6ClassGenerator")) {
if (identical(layer_class$get_inherit(), KerasLayer)) {
# old-style custom class, inherits KerasLayer
c(layer, args) %<-% compat_custom_KerasLayer_handler(layer_class, args)
layer_class <- function(...) layer
} else {
# new-style custom class, inherits anything else, typically keras$layers$Layer
layer_class <- r_to_py(layer_class, convert = TRUE)
}
}
# create layer from class
layer <- do.call(layer_class, args)
# compose if we have an x
if (missing(object) || is.null(object))
layer
else
invisible(compose_layer(object, layer))
}
# Helper function to compose a layer with an object of type Model or Layer
compose_layer <- function(object, layer, ...) {
UseMethod("compose_layer")
}
#' @export
compose_layer.default <- function(object, layer, ...) {
layer(object, ...)
}
#' @export
compose_layer.keras.models.Sequential <- function(object, layer, ...) {
if(length(list(...)) > 0) warning("arguments passed via ellipsis will be ignored")
object$add(layer)
object
}
compose_layer.keras.engine.sequential.Sequential <- compose_layer.keras.models.Sequential
# compose_layer.keras.src.engine.sequential.Sequential <- compose_layer.keras.models.Sequential
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.