R/layers-core.R

Defines functions compose_layer.keras.models.Sequential compose_layer.default compose_layer create_layer as_shape normalize_shape normalize_path as_layer_index as_nullable_integer as_integer_tuple as_integer layer_flatten layer_masking layer_activity_regularization layer_lambda layer_repeat_vector layer_permute layer_reshape layer_dense layer_input

Documented in create_layer layer_activity_regularization layer_dense layer_flatten layer_input layer_lambda layer_masking layer_permute layer_repeat_vector layer_reshape

#' Input layer
#'
#' Layer to be used as an entry point into a graph.
#'
#' @param shape Shape, not including the batch size. For instance,
#'   `shape=c(32)` indicates that the expected input will be batches
#'   of 32-dimensional vectors.
#' @param batch_shape Shape, including the batch size. For instance,
#' `shape = c(10,32)` indicates that the expected input will be batches
#'  of 10 32-dimensional vectors. `batch_shape = list(NULL, 32)` indicates
#'  batches of an arbitrary number of 32-dimensional vectors.
#' @param name An optional name string for the layer. Should be unique in a
#'   model (do not reuse the same name twice). It will be autogenerated if it
#'   isn't provided.
#' @param dtype  The data type expected by the input, as a string (`float32`,
#'   `float64`, `int32`...)
#' @param sparse Boolean, whether the placeholder created is meant to be sparse.
#' @param tensor Existing tensor to wrap into the `Input` layer. If set, the
#'   layer will not create a placeholder tensor.
#' @param ragged A boolean specifying whether the placeholder to be created is
#'   ragged. Only one of 'ragged' and 'sparse' can be `TRUE` In this case, values
#'   of 'NULL' in the 'shape' argument represent ragged dimensions.
#'
#' @return A tensor
#'
#' @family core layers
#'
#' @export
layer_input <-
function(shape = NULL, batch_shape = NULL, name = NULL,
         dtype = NULL, sparse = FALSE, tensor = NULL,
         ragged = FALSE) {
  args <- capture_args(match.call(),
                       list(shape = normalize_shape,
                            batch_shape = normalize_shape))
  do.call(keras$layers$Input, args)
}


#' Add a densely-connected NN layer to an output
#'
#' Implements the operation: `output = activation(dot(input, kernel) + bias)`
#' where `activation` is the element-wise activation function passed as the
#' `activation` argument, `kernel` is a weights matrix created by the layer, and
#' `bias` is a bias vector created by the layer (only applicable if `use_bias`
#' is `TRUE`). Note: if the input to the layer has a rank greater than 2, then
#' it is flattened prior to the initial dot product with `kernel`.
#'
#' @inheritParams layer_input
#'
#' @param object What to compose the new `Layer` instance with. Typically a
#'   Sequential model or a Tensor (e.g., as returned by `layer_input()`).
#'   The return value depends on `object`. If `object` is:
#'
#'   -  missing or `NULL`, the `Layer` instance is returned.
#'   -  a `Sequential` model, the model with an additional layer is returned.
#'   -  a Tensor, the output tensor from `layer_instance(object)` is returned.
#'
#' @param units Positive integer, dimensionality of the output space.
#' @param activation Name of activation function to use. If you don't specify
#'   anything, no activation is applied (ie. "linear" activation: a(x) = x).
#' @param use_bias Whether the layer uses a bias vector.
#' @param kernel_initializer Initializer for the `kernel` weights matrix.
#' @param bias_initializer Initializer for the bias vector.
#' @param kernel_regularizer Regularizer function applied to the `kernel`
#'   weights matrix.
#' @param bias_regularizer Regularizer function applied to the bias vector.
#' @param activity_regularizer Regularizer function applied to the output of the
#'   layer (its "activation")..
#' @param kernel_constraint Constraint function applied to the `kernel` weights
#'   matrix.
#' @param bias_constraint  Constraint function applied to the bias vector.
#' @param input_shape Dimensionality of the input (integer) not including the
#'   samples axis. This argument is required when using this layer as the first
#'   layer in a model.
#' @param batch_input_shape Shapes, including the batch size. For instance,
#'   `batch_input_shape=c(10, 32)` indicates that the expected input will be
#'   batches of 10 32-dimensional vectors. `batch_input_shape=list(NULL, 32)`
#'   indicates batches of an arbitrary number of 32-dimensional vectors.
#' @param batch_size Fixed batch size for layer
#' @param trainable  Whether the layer weights will be updated during training.
#' @param weights Initial weights for layer.
#'
#' @section Input and Output Shapes:
#'
#'   Input shape: nD tensor with shape: `(batch_size, ..., input_dim)`. The most
#'   common situation would be a 2D input with shape `(batch_size, input_dim)`.
#'
#'   Output shape: nD tensor with shape: `(batch_size, ..., units)`. For
#'   instance, for a 2D input with shape `(batch_size, input_dim)`, the output
#'   would have shape `(batch_size, unit)`.
#'
#' @family core layers
#'
#' @export
layer_dense <- function(object, units, activation = NULL, use_bias = TRUE,
                        kernel_initializer = 'glorot_uniform', bias_initializer = 'zeros',
                        kernel_regularizer = NULL, bias_regularizer = NULL, activity_regularizer = NULL,
                        kernel_constraint = NULL, bias_constraint = NULL, input_shape = NULL,
                        batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
                        name = NULL, trainable = NULL, weights = NULL
                        ) {

  create_layer(keras$layers$Dense, object, list(
    units = as.integer(units),
    activation = activation,
    use_bias = use_bias,
    kernel_initializer = kernel_initializer,
    bias_initializer = bias_initializer,
    kernel_regularizer = kernel_regularizer,
    bias_regularizer = bias_regularizer,
    activity_regularizer = activity_regularizer,
    kernel_constraint = kernel_constraint,
    bias_constraint = bias_constraint,
    input_shape = normalize_shape(input_shape),
    batch_input_shape = normalize_shape(batch_input_shape),
    batch_size = as_nullable_integer(batch_size),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  ))

}

#' Reshapes an output to a certain shape.
#'
#' @inheritParams layer_activation
#'
#' @param target_shape List of integers, does not include the samples dimension
#'   (batch size).
#'
#' @section Input and Output Shapes:
#'
#'   Input shape: Arbitrary, although all dimensions in the input shaped must be
#'   fixed.
#'
#'   Output shape: `(batch_size,) + target_shape`.
#'
#' @family core layers
#'
#' @export
layer_reshape <- function(object, target_shape, input_shape = NULL,
                          batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
                          name = NULL, trainable = NULL, weights = NULL) {

  create_layer(keras$layers$Reshape, object, list(
    target_shape = normalize_shape(target_shape),
    input_shape = normalize_shape(input_shape),
    batch_input_shape = normalize_shape(batch_input_shape),
    batch_size = as_nullable_integer(batch_size),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  ))

}


#' Permute the dimensions of an input according to a given pattern
#'
#' @param dims List of integers. Permutation pattern, does not include the
#'   samples dimension. Indexing starts at 1. For instance, `(2, 1)` permutes
#'   the first and second dimension of the input.
#'
#' @inheritParams layer_activation
#'
#' @section Input and Output Shapes:
#'
#'   Input shape: Arbitrary
#'
#'   Output shape: Same as the input shape, but with the dimensions re-ordered
#'   according to the specified pattern.
#'
#' @note Useful for e.g. connecting RNNs and convnets together.
#'
#' @family core layers
#'
#' @export
layer_permute <- function(object, dims, input_shape = NULL,
                          batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
                          name = NULL, trainable = NULL, weights = NULL) {

  create_layer(keras$layers$Permute, object, list(
    dims = as_integer_tuple(dims, force_tuple = TRUE),
    input_shape = normalize_shape(input_shape),
    batch_input_shape = normalize_shape(batch_input_shape),
    batch_size = as_nullable_integer(batch_size),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  ))

}

#' Repeats the input n times.
#'
#' @inheritParams layer_dense
#'
#' @param n integer, repetition factor.
#'
#' @section Input shape: 2D tensor of shape `(num_samples, features)`.
#'
#' @section Output shape: 3D tensor of shape `(num_samples, n, features)`.
#'
#' @family core layers
#'
#' @export
layer_repeat_vector <- function(object, n,
                                batch_size = NULL, name = NULL, trainable = NULL, weights = NULL) {

  create_layer(keras$layers$RepeatVector, object, list(
    n = as.integer(n),
    batch_size = as_nullable_integer(batch_size),
    name = name,
    trainable = trainable,
    weights = weights
  ))

}

#' Wraps arbitrary expression as a layer
#'
#' @inheritParams layer_dense
#'
#' @param f The function to be evaluated. Takes input tensor as first
#'   argument.
#' @param output_shape Expected output shape from the function (not required
#'   when using TensorFlow back-end).
#' @param mask mask
#' @param arguments optional named list of keyword arguments to be passed to the
#'   function.
#'
#' @section Input shape: Arbitrary. Use the keyword argument input_shape (list
#'   of integers, does not include the samples axis) when using this layer as
#'   the first layer in a model.
#'
#' @section Output shape: Arbitrary (based on tensor returned from the function)
#'
#' @family core layers
#'
#' @export
layer_lambda <- function(object, f, output_shape = NULL, mask = NULL, arguments = NULL,
                         input_shape = NULL, batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
                         name = NULL, trainable = NULL, weights = NULL) {

  args <- list(
    `function` = f,
    mask = mask,
    arguments = arguments,
    input_shape = normalize_shape(input_shape),
    batch_input_shape = normalize_shape(batch_input_shape),
    batch_size = as_nullable_integer(batch_size),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  )

  if (backend()$backend() %in% c("theano", "cntk"))
    args$output_shape <- as_integer_tuple(output_shape, force_tuple = TRUE)
  else if(!is.null(output_shape))
    args$output_shape <- normalize_shape(output_shape)


  create_layer(keras$layers$Lambda, object, args)

}


#' Layer that applies an update to the cost function based input activity.
#'
#' @inheritParams layer_dense
#'
#' @param l1 L1 regularization factor (positive float).
#' @param l2 L2 regularization factor (positive float).
#'
#' @section Input shape: Arbitrary. Use the keyword argument `input_shape` (list
#'   of integers, does not include the samples axis) when using this layer as
#'   the first layer in a model.
#'
#' @section Output shape: Same shape as input.
#'
#' @family core layers
#'
#' @export
layer_activity_regularization <- function(object, l1 = 0.0, l2 = 0.0, input_shape = NULL,
                                          batch_input_shape = NULL, batch_size = NULL,
                                          dtype = NULL, name = NULL, trainable = NULL,
                                          weights = NULL) {

  create_layer(keras$layers$ActivityRegularization, object, list(
    l1 = l1,
    l2 = l2,
    input_shape = normalize_shape(input_shape),
    batch_input_shape = normalize_shape(batch_input_shape),
    batch_size = as_nullable_integer(batch_size),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  ))

}

#' Masks a sequence by using a mask value to skip timesteps.
#'
#' For each timestep in the input tensor (dimension #1 in the tensor), if all
#' values in the input tensor at that timestep are equal to `mask_value`, then
#' the timestep will be masked (skipped) in all downstream layers (as long as
#' they support masking). If any downstream layer does not support masking yet
#' receives such an input mask, an exception will be raised.
#'
#' @inheritParams layer_dense
#'
#' @param mask_value float, mask value
#'
#' @family core layers
#'
#' @export
layer_masking <- function(object, mask_value = 0.0, input_shape = NULL,
                          batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
                          name = NULL, trainable = NULL, weights = NULL) {

  create_layer(keras$layers$Masking, object, list(
    mask_value = mask_value,
    input_shape = normalize_shape(input_shape),
    batch_input_shape = normalize_shape(batch_input_shape),
    batch_size = as_nullable_integer(batch_size),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  ))

}



#' Flattens an input
#'
#' Flatten a given input, does not affect the batch size.
#'
#' @inheritParams layer_activation
#'
#' @param data_format A string. one of `channels_last` (default) or
#'   `channels_first`. The ordering of the dimensions in the inputs. The purpose
#'   of this argument is to preserve weight ordering when switching a model from
#'   one data format to another. `channels_last` corresponds to inputs with
#'   shape `(batch, ..., channels)` while `channels_first` corresponds to inputs
#'   with shape `(batch, channels, ...)`. It defaults to the `image_data_format`
#'   value found in your Keras config file at `~/.keras/keras.json`. If you
#'   never set it, then it will be "channels_last".
#'
#' @family core layers
#'
#' @export
layer_flatten <- function(object, data_format = NULL, input_shape = NULL, dtype = NULL,
                          name = NULL, trainable = NULL, weights = NULL) {

  args <- list(
    input_shape = normalize_shape(input_shape),
    dtype = dtype,
    name = name,
    trainable = trainable,
    weights = weights
  )

  if (keras_version() >= "2.2.0") {
    args$data_format <- data_format
  } else if (keras_version() >= "2.1.6") {
    if (is.null(data_format))
      data_format <- "channels_last"
    args$data_format <- data_format
  }

  create_layer(keras$layers$Flatten, object, args)

}





as_integer <- function(x) {
  if (is.numeric(x))
    as.integer(x)
  else
    x
}

as_integer_tuple <- function(x, force_tuple = FALSE) {
  if (is.null(x))
    x
  else if (is.list(x) || force_tuple)
    tuple(as.list(as.integer(x)))
  else
    as.integer(x)
}

as_nullable_integer <- function(x) {
  if (is.null(x))
    x
  else
    as.integer(x)
}

as_layer_index <- function(x) {
  if (is.null(x))
    return(x)

  x <- as.integer(x)

  if (x == 0L)
    stop("`index` for get_layer() is 1-based (0 was passed as the index)")

  if (x > 0L)
    x - 1L
  else
    x
}

# Helper function to normalize paths
normalize_path <- function(path) {
  if (is.null(path))
    NULL
  else
    normalizePath(path.expand(path), mustWork = FALSE)
}



# Helper function to coerce shape arguments to tuple
# tf$reshape()/k_reshape() doesn't accept a tf.TensorShape object
normalize_shape <- function(shape) {

  # reflect NULL back
  if (is.null(shape))
    return(shape)

  # if it's a list or a numeric vector then convert to integer
  # NA's in are accepted as NULL
  # also accept c(NA), as if it was a numeric
  if (is.list(shape) || is.numeric(shape) ||
      (is.logical(shape) && all(is.na(shape)))) {

    shape <- lapply(shape, function(value) {
      # Pass through python objects unmodified, only coerce R objects
      # supplied shapes, e.g., to tf$random$normal, can be a list that's a mix
      # of scalar integer tensors and regular integers
      if (inherits(value, "python.builtin.object"))
        return(value)

      # accept NA,NA_integer_,NA_real_ as NULL
      if ((is_scalar(value) && is.na(value)))
        return(NULL)

      if (!is.null(value))
        as.integer(value)
      else
        NULL
    })
  }

  if (inherits(shape, "tensorflow.python.framework.tensor_shape.TensorShape"))
    shape <- as.list(shape$as_list()) # unpack for tuple()

  # coerce to tuple so it's iterable
  tuple(shape)
}

# @export
# format.python.builtin.object <- function(x, ...) {
#   capture.output(print(x, ...))
# }

as_shape <- function(x) {
  lapply(x, function(d) {
    if (is.null(d))
      NULL
    else
      as.integer(d)
  })
}

#' Create a Keras Layer
#'
#' @param layer_class Python layer class or R6 class of type KerasLayer
#' @param object Object to compose layer with. This is either a
#' [keras_model_sequential()] to add the layer to, or another Layer which
#' this layer will call.
#' @param args List of arguments to layer constructor function
#'
#' @return A Keras layer
#'
#' @note The `object` parameter can be missing, in which case the
#' layer is created without a connection to an existing graph.
#'
#' @export
create_layer <- function(layer_class, object, args = list()) {

  safe_to_drop_nulls <- c(
    "input_shape",
    "batch_input_shape",
    "batch_size",
    "dtype",
    "name",
    "trainable",
    "weights"
  )
  for (nm in safe_to_drop_nulls)
    args[[nm]] <- args[[nm]]

  # convert custom constraints
  constraint_args <- grepl("^.*_constraint$", names(args))
  constraint_args <- names(args)[constraint_args]
  for (arg in constraint_args)
    args[[arg]] <- as_constraint(args[[arg]])

  if (inherits(layer_class, "R6ClassGenerator")) {

    if (identical(layer_class$get_inherit(), KerasLayer)) {
      # old-style custom class, inherits KerasLayer
      c(layer, args) %<-% compat_custom_KerasLayer_handler(layer_class, args)
      layer_class <- function(...) layer
    } else {
      # new-style custom class, inherits anything else, typically keras$layers$Layer
      layer_class <- r_to_py(layer_class, convert = TRUE)
    }
  }

  # create layer from class
  layer <- do.call(layer_class, args)

  # compose if we have an x
  if (missing(object) || is.null(object))
    layer
  else
    invisible(compose_layer(object, layer))
}


# Helper function to compose a layer with an object of type Model or Layer

compose_layer <- function(object, layer, ...) {
  UseMethod("compose_layer")
}

compose_layer.default <- function(object, layer, ...) {
  layer(object, ...)
}

compose_layer.keras.models.Sequential <- function(object, layer, ...) {
  if(length(list(...)) > 0) warning("arguments passed via ellipsis will be ignored")

  object$add(layer)
  object
}

compose_layer.keras.engine.sequential.Sequential <- compose_layer.keras.models.Sequential

Try the keras package in your browser

Any scripts or data that you put into this service are public.

keras documentation built on May 23, 2022, 5:06 p.m.