R/metrics-callback.R

KerasMetricsCallback <- R6::R6Class(
  "KerasMetricsCallback",

  inherit = KerasCallback,

  public = list(

    # instance data
    metrics = list(),
    metrics_viewer = NULL,
    view_metrics = FALSE,

    initialize = function(view_metrics = FALSE) {
      self$view_metrics <- view_metrics
    },

    on_train_begin = function(logs = NULL) {

      # strip validation metrics if do_validation is FALSE (for
      # fit_generator and fitting TF record the val_ metrics are
      # passed even though no data will be provided for them)
      if (!self$params$do_validation) {
        self$params$metrics <- Filter(function(metric) {
          !grepl("^val_", metric)
        }, self$params$metrics)
      }

      # initialize metrics
      for (metric in self$params$metrics)
        self$metrics[[metric]] <- numeric()

      # handle metrics
      if (length(logs) > 0)
        self$on_metrics(logs, 0.5)

      if (tfruns::is_run_active()) {
        self$write_params(self$params)
        self$write_model_info(self$model)
      }
    },

    on_epoch_end = function(epoch, logs = NULL) {

      # handle metrics
      self$on_metrics(logs, 0.1)

    },

    on_metrics = function(logs, sleep) {

      # record metrics
      for (metric in names(self$metrics)) {
        # guard against metrics not yet available by using NA
        # when a named metrics isn't passed in 'logs'
        value <- logs[[metric]]
        if (is.null(value))
          value <- NA
        else
          value <- mean(value)
        self$metrics[[metric]] <- c(self$metrics[[metric]], value)
      }

      # create history object and convert to metrics data frame
      history <- keras_training_history(self$params, self$metrics)
      metrics <- self$as_metrics_df(history)

      # view metrics if requested
      if (self$view_metrics) {

        # create the metrics_viewer or update if we already have one
        if (is.null(self$metrics_viewer)) {
          self$metrics_viewer <- tfruns::view_run_metrics(metrics)
        }
        else {
          tfruns::update_run_metrics(self$metrics_viewer, metrics)
        }

        # pump events
        Sys.sleep(sleep)
      }

      # record metrics
      tfruns::write_run_metadata("metrics", metrics)

    },

    # convert keras history to metrics data frame suitable for plotting
    as_metrics_df = function(history) {

      # create metrics data frame
      df <- as.data.frame(history$metrics)

      # pad to epochs if necessary
      pad <- history$params$epochs - nrow(df)
      pad_data <- list()
      for (metric in history$params$metrics)
        pad_data[[metric]] <- rep_len(NA, pad)
      df <- rbind(df, pad_data)

      # return df
      df
    },

    write_params = function(params) {
      properties <- list()
      properties$samples <- params$samples
      properties$validation_samples <- params$validation_samples
      properties$epochs <- params$epochs
      properties$batch_size <- params$batch_size
      tfruns::write_run_metadata("properties", properties)
    },

    write_model_info = function(model) {
      tryCatch({
        model_info <- list()
        model_info$model <- py_str(model, line_length = 80L)
        if (is.character(model$loss))
          model_info$loss_function <- model$loss
        else if (inherits(model$loss, "python.builtin.function"))
          model_info$loss_function <- model$loss$`__name__`
        optimizer <- model$optimizer
        if (!is.null(optimizer)) {
          model_info$optimizer <- py_str(optimizer)
          model_info$learning_rate <- k_eval(optimizer$lr)
        }
        tfruns::write_run_metadata("properties", model_info)
      }, error = function(e) {
        warning("Unable to log model info: ", e$message, call. = FALSE)
      })

    }
  )
)

KerasMetricsCallbackV2 <- R6::R6Class(
  "KerasMetricsCallbackV2",

  inherit = KerasCallback,

  public = list(

    # instance data
    metrics = list(),
    metrics_viewer = NULL,
    view_metrics = FALSE,
    initial_epoch = 0,

    initialize = function(view_metrics = FALSE, initial_epoch = 0) {
      self$view_metrics <- view_metrics
      self$initial_epoch <- initial_epoch
    },

    on_train_begin = function(logs = NULL) {
      if (tfruns::is_run_active()) {
        self$write_params(self$params)
        self$write_model_info(self$model)
      }
    },

    on_epoch_end = function(epoch, logs = NULL) {

      if (epoch - self$initial_epoch == 0) {

        metric_names <- names(logs)
        for (metric in metric_names)
          self$metrics[[metric]] <- numeric()

        sleep <- 0.5
      } else {

        sleep <- 0.1

      }

      # handle metrics
      self$on_metrics(logs, sleep)

    },

    on_metrics = function(logs, sleep) {

      # record metrics
      for (metric in names(self$metrics)) {
        # guard against metrics not yet available by using NA
        # when a named metrics isn't passed in 'logs'
        value <- logs[[metric]]
        if (is.null(value))
          value <- NA
        else
          value <- mean(value)

        self$metrics[[metric]] <- c(self$metrics[[metric]], value)
      }

      # create history object and convert to metrics data frame

      history <- keras_training_history(self$params, self$metrics)
      metrics <- self$as_metrics_df(history)

      # view metrics if requested
      if (self$view_metrics) {

        # create the metrics_viewer or update if we already have one
        if (is.null(self$metrics_viewer)) {
          self$metrics_viewer <- tfruns::view_run_metrics(metrics)
        } else {
          tfruns::update_run_metrics(self$metrics_viewer, metrics)
        }

        # pump events
        Sys.sleep(sleep)
      }
      # record metrics
      tfruns::write_run_metadata("metrics", metrics)
    },

    # convert keras history to metrics data frame suitable for plotting
    as_metrics_df = function(history) {

      # create metrics data frame
      df <- as.data.frame(history$metrics)

      # pad to epochs if necessary
      pad <- history$params$epochs - nrow(df)
      pad_data <- list()

      if (tensorflow::tf_version() < "2.2")
        metric_names <- history$params$metrics
      else
        metric_names <- names(history$metrics)

      for (metric in metric_names)
        pad_data[[metric]] <- rep_len(NA, pad)

      df <- rbind(df, pad_data)

      # return df
      df
    },

    write_params = function(params) {
      properties <- list()
      properties$samples <- params$samples
      properties$validation_samples <- params$validation_samples
      properties$epochs <- params$epochs
      properties$batch_size <- params$batch_size
      tfruns::write_run_metadata("properties", properties)
    },

    write_model_info = function(model) {
      tryCatch({
        model_info <- list()
        model_info$model <- py_str(model, line_length = 80L)
        if (is.character(model$loss))
          model_info$loss_function <- model$loss
        else if (inherits(model$loss, "python.builtin.function"))
          model_info$loss_function <- model$loss$`__name__`
        optimizer <- model$optimizer
        if (!is.null(optimizer)) {
          model_info$optimizer <- py_str(optimizer)
          model_info$learning_rate <- k_eval(optimizer$lr)
        }
        tfruns::write_run_metadata("properties", model_info)
      }, error = function(e) {
        warning("Unable to log model info: ", e$message, call. = FALSE)
      })

    }
  )
)

Try the keras package in your browser

Any scripts or data that you put into this service are public.

keras documentation built on Aug. 21, 2021, 9:07 a.m.