R/lav_matrix_rotate.R

Defines functions lav_matrix_rotate_pairwise lav_matrix_rotate_gpa lav_matrix_rotate

# rotation algorithms
#
# YR  3 April 2019 -- gradient projection algorithm
# YR 21 April 2019 -- pairwise rotation algorithm
# YR 11 May   2020 -- order.idx is done in rotation matrix
#                     (suggested by Florian Scharf)
# YR 02 June  2024 -- add group argument, so target and target.mask can
#                     be a list

# main function to rotate a single matrix 'A'
lav_matrix_rotate <- function(A = NULL, # original matrix
                              orthogonal = FALSE, # default is oblique
                              method = "geomin", # default rot method
                              method.args = list(
                                geomin.epsilon = 0.01,
                                orthomax.gamma = 1,
                                cf.gamma = 0,
                                oblimin.gamma = 0,
                                promax.kappa = 4,
                                target = matrix(0, 0, 0),
                                target.mask = matrix(0, 0, 0)
                              ),
                              init.ROT = NULL, # initial rotation matrix
                              init.ROT.check = TRUE, # check if init ROT is ok
                              rstarts = 100L, # number of random starts
                              row.weights = "default", # row weighting
                              std.ov = FALSE, # rescale ov
                              ov.var = NULL, # ov variances
                              algorithm = "gpa", # rotation algorithm
                              reflect = TRUE, # refect sign
                              order.lv.by = "index", # how to order the lv's
                              gpa.tol = 0.00001, # stopping tol gpa
                              tol = 1e-07, # stopping tol others
                              keep.rep = FALSE, # store replications
                              max.iter = 10000L, # max gpa iterations
							  group = 1L) { # group number

  # check A
  if (!inherits(A, "matrix")) {
    lav_msg_stop(gettext("A does not seem to a matrix"))
  }

  P <- nrow(A)
  M <- ncol(A)
  if (M < 2L) { # single dimension
    res <- list(
      LAMBDA = A, PHI = matrix(1, 1, 1), ROT = matrix(1, 1, 1),
      orthogonal = orthogonal, method = "none",
      method.args = list(), row.weights = "none",
      algorithm = "none", iter = 0L, converged = TRUE,
      method.value = 0
    )
    return(res)
  }

  # method
  method <- tolower(method)

  # if promax, skip everything, then call promax() later
  if (method == "promax") {
    # orig.algorithm <- algorithm
    # orig.rstarts <- rstarts

    algorithm <- "none"
    rstarts <- 0L
    init.ROT <- NULL
    ROT <- diag(M)
  }

  # check init.ROT
  if (!is.null(init.ROT) && init.ROT.check) {
    if (!inherits(init.ROT, "matrix")) {
      lav_msg_stop(gettext("init.ROT does not seem to a matrix"))
    }
    if (nrow(init.ROT) != M) {
      lav_msg_stop(gettextf(
        "nrow(init.ROT) = %1$s does not equal ncol(A) = %2$s",
        nrow(init.ROT), M))
    }
    if (nrow(init.ROT) != ncol(init.ROT)) {
      lav_msg_stop(gettextf(
        "nrow(init.ROT) = %1$s does not equal ncol(init.ROT) = %2$s",
        nrow(init.ROT), ncol(init.ROT)))
    }
    # rotation matrix? init.ROT^T %*% init.ROT = I
    RR <- crossprod(init.ROT)
    if (!lav_matrix_rotate_check(init.ROT, orthogonal = orthogonal)) {
      lav_msg_stop(gettext("init.ROT does not look like a rotation matrix"))
    }
  }

  # determine method function name
  if (method %in% c(
    "cf-quartimax", "cf-varimax", "cf-equamax",
    "cf-parsimax", "cf-facparsim"
  )) {
    method.fname <- "lav_matrix_rotate_cf"
    method.args$cf.gamma <- switch(method,
      "cf-quartimax" = 0,
      "cf-varimax"   = 1 / P,
      "cf-equamax"   = M / (2 * P),
      "cf-parsimax"  = (M - 1) / (P + M - 2),
      "cf-facparsim" = 1
    )
  } else if (method %in% c("bi-quartimin", "biquartimin")) {
    method.fname <- "lav_matrix_rotate_biquartimin"
  } else if (method %in% c("bi-geomin", "bigeomin")) {
    method.fname <- "lav_matrix_rotate_bigeomin"
  } else {
    method.fname <- paste("lav_matrix_rotate_", method, sep = "")
  }

  # check if rotation method exists
  check <- try(get(method.fname), silent = TRUE)
  if (inherits(check, "try-error")) {
    lav_msg_stop(gettext("unknown rotation method:"), method.fname)
  }

  # if target, check target matrix
  if (method == "target" || method == "pst") {
    target <- method.args$target
	if (is.list(target)) {
	  method.args$target <- target <- target[[group]]
	}
    # check dimension of target/A
    if (nrow(target) != nrow(A)) {
      lav_msg_stop(gettext("nrow(target) != nrow(A)"))
    }
    if (ncol(target) != ncol(A)) {
      lav_msg_stop(gettext("ncol(target) != ncol(A)"))
    }
  }
  if (method == "pst") {
    target.mask <- method.args$target.mask
	if (is.list(target.mask)) {
	  method.args$target.mask <- target.mask <- target.mask[[group]]
	}
    # check dimension of target.mask/A
    if (nrow(target.mask) != nrow(A)) {
      lav_msg_stop(gettext("nrow(target.mask) != nrow(A)"))
    }
    if (ncol(target.mask) != ncol(A)) {
      lav_msg_stop(gettext("col(target.mask) != ncol(A)"))
    }
  }
  # we keep this here, so lav_matrix_rotate() can be used independently
  if (method == "target" && anyNA(target)) {
    method <- "pst"
    method.fname <- "lav_matrix_rotate_pst"
    target.mask <- matrix(1, nrow = nrow(target), ncol = ncol(target))
    target.mask[is.na(target)] <- 0
    method.args$target.mask <- target.mask
  }

  # set orthogonal option
  if (missing(orthogonal)) {
    # the default is oblique, except for varimax, entropy and a few others
    if (method %in% c(
      "varimax", "entropy", "mccammon",
      "tandem1", "tandem2"
    )) {
      orthogonal <- TRUE
    } else {
      orthogonal <- FALSE
    }
  } else {
    if (!orthogonal && method %in% c(
      "varimax", "entropy", "mccammon",
      "tandem1", "tandem2"
    )) {
      lav_msg_warn(gettextf(
        "rotation method %s may not work with oblique rotation.",
        dQuote(method)
      ))
    }
  }

  # set row.weights
  row.weights <- tolower(row.weights)
  if (row.weights == "default") {
    # the default is "none", except for varimax
    if (method %in% c("varimax", "promax")) {
      row.weights <- "kaiser"
    } else {
      row.weights <- "none"
    }
  }

  # check algorithm
  algorithm <- tolower(algorithm)
  if (algorithm %in% c("gpa", "pairwise", "none")) {
    # nothing to do
  } else {
    lav_msg_stop(gettext("algorithm must be gpa or pairwise"))
  }



  # 1. compute row weigths

  # 1.a cov -> cor?
  if (std.ov) {
    A <- A * 1 / sqrt(ov.var)
  }

  if (row.weights == "none") {
    weights <- rep(1.0, P)
  } else if (row.weights == "kaiser") {
    weights <- lav_matrix_rotate_kaiser_weights(A)
  } else if (row.weights == "cureton-mulaik") {
    weights <- lav_matrix_rotate_cm_weights(A)
  } else {
    lav_msg_stop(gettext("row.weights can be none, kaiser or cureton-mulaik"))
  }
  A <- A * weights


  # 2. rotate

  # multiple random starts?
  if (rstarts > 0L) {
    REP <- sapply(seq_len(rstarts), function(rep) {
      # random start (always orthogonal)
      init.ROT <- lav_matrix_rotate_gen(M = M, orthogonal = TRUE)
      # init.ROT <- lav_matrix_rotate_gen(M = M, orthogonal = orthogonal)

      if (lav_verbose()) {
        cat("\n")
        cat("rstart = ", sprintf("%4d", rep), " start:\n")
      }


      # choose rotation algorithm
      if (algorithm == "gpa") {
        ROT <- lav_matrix_rotate_gpa(
          A = A, orthogonal = orthogonal,
          init.ROT = init.ROT,
          method.fname = method.fname,
          method.args = method.args,
          gpa.tol = gpa.tol,
          max.iter = max.iter
        )
        info <- attr(ROT, "info")
        attr(ROT, "info") <- NULL
        res <- c(info$method.value, lav_matrix_vec(ROT))
      } else if (algorithm == "pairwise") {
        ROT <- lav_matrix_rotate_pairwise(
          A = A,
          orthogonal = orthogonal,
          init.ROT = init.ROT,
          method.fname = method.fname,
          method.args = method.args,
          tol = tol,
          max.iter = max.iter
        )
        info <- attr(ROT, "info")
        attr(ROT, "info") <- NULL
        res <- c(info$method.value, lav_matrix_vec(ROT))
      }

      if (lav_verbose()) {
        cat(
          "rstart = ", sprintf("%4d", rep),
          " end; current crit = ", sprintf("%17.15f", res[1]), "\n"
        )
      }
      res
    })
    best.idx <- which.min(REP[1, ])
    ROT <- matrix(REP[-1, best.idx], nrow = M, ncol = M)
    if (keep.rep) {
      info <- list(method.value = REP[1, best.idx], REP = REP)
    } else {
      info <- list(method.value = REP[1, best.idx])
    }
  } else if (algorithm != "none") {
    # initial rotation matrix
    if (is.null(init.ROT)) {
      init.ROT <- diag(M)
    }

    # Gradient Projection Algorithm
    if (algorithm == "gpa") {
      ROT <- lav_matrix_rotate_gpa(
        A = A, orthogonal = orthogonal,
        init.ROT = init.ROT,
        method.fname = method.fname,
        method.args = method.args,
        gpa.tol = gpa.tol,
        max.iter = max.iter
      )
    } else if (algorithm == "pairwise") {
      ROT <- lav_matrix_rotate_pairwise(
        A = A,
        orthogonal = orthogonal,
        init.ROT = init.ROT,
        method.fname = method.fname,
        method.args = method.args,
        tol = tol,
        max.iter = max.iter
      )
    }
    info <- attr(ROT, "info")
    attr(ROT, "info") <- NULL
  }

  # final rotation
  if (orthogonal) {
    # LAMBDA <- A %*% solve(t(ROT))
    # note: when ROT is orthogonal, solve(t(ROT)) == ROT
    LAMBDA <- A %*% ROT
    PHI <- diag(ncol(LAMBDA)) # correlation matrix == I
  } else {
    # LAMBDA <- A %*% solve(t(ROT))
    LAMBDA <- t(solve(ROT, t(A)))
    PHI <- crossprod(ROT) # correlation matrix
  }

  # 3. undo row weighting
  LAMBDA <- LAMBDA / weights

  # here, after re-weighted, we run promax if needed
  if (method == "promax") {
    LAMBDA.orig <- LAMBDA

    # first, run 'classic' varimax using varimax() from the stats package
    # we split varimax from promax, so we can control the normalize flag
    normalize.flag <- row.weights == "kaiser"
    xx <- stats::varimax(x = LAMBDA, normalize = normalize.flag)

    # promax
    kappa <- method.args$promax.kappa
    out <- lav_matrix_rotate_promax(
      x = xx$loadings, m = kappa,
      varimax.ROT = xx$rotmat
    )
    LAMBDA <- out$loadings
    PHI <- solve(crossprod(out$rotmat))

    # compute 'ROT' to be compatible with GPa
    ROTt.inv <- solve(
      crossprod(LAMBDA.orig),
      crossprod(LAMBDA.orig, LAMBDA)
    )
    ROT <- solve(t(ROTt.inv))

    info <- list(
      algorithm = "promax", iter = 0L, converged = TRUE,
      method.value = as.numeric(NA)
    )
  }

  # 3.b undo cov -> cor
  if (std.ov) {
    LAMBDA <- LAMBDA * sqrt(ov.var)
  }

  # 4.a reflect so that column sum is always positive
  if (reflect) {
    SUM <- colSums(LAMBDA)
    neg.idx <- which(SUM < 0)
    if (length(neg.idx) > 0L) {
      LAMBDA[, neg.idx] <- -1 * LAMBDA[, neg.idx, drop = FALSE]
      ROT[, neg.idx] <- -1 * ROT[, neg.idx, drop = FALSE]
      if (!orthogonal) {
        # recompute PHI
        PHI <- crossprod(ROT)
      }
    }
  }

  # 4.b reorder the columns
  if (order.lv.by == "sumofsquares") {
    L2 <- LAMBDA * LAMBDA
    order.idx <- base::order(colSums(L2), decreasing = TRUE)
  } else if (order.lv.by == "index") {
    # reorder using Asparouhov & Muthen 2009 criterion (see Appendix D)
    max.loading <- apply(abs(LAMBDA), 2, max)
    # 1: per factor, number of the loadings that are at least 0.8 of the
    #    highest loading of the factor
    # 2: mean of the index numbers
    average.index <- sapply(seq_len(ncol(LAMBDA)), function(i) {
      mean(which(abs(LAMBDA[, i]) >= 0.8 * max.loading[i]))
    })
    # order of the factors
    order.idx <- base::order(average.index)
  } else if (order.lv.by == "none") {
    order.idx <- seq_len(ncol(LAMBDA))
  } else {
    lav_msg_stop(gettext("order must be index, sumofsquares or none"))
  }

  # do the same in PHI
  LAMBDA <- LAMBDA[, order.idx, drop = FALSE]
  PHI <- PHI[order.idx, order.idx, drop = FALSE]

  # new in 0.6-6, also do this in ROT, so we won't have to do this
  # again upstream
  ROT <- ROT[, order.idx, drop = FALSE]

  # 6. return results as a list
  res <- list(
    LAMBDA = LAMBDA, PHI = PHI, ROT = ROT, order.idx = order.idx,
    orthogonal = orthogonal, method = method,
    method.args = method.args, row.weights = row.weights
  )

  # add method info
  res <- c(res, info)

  res
}


# Gradient Projection Algorithm (Jennrich 2001, 2002)
#
# - this is a translation of the SAS PROC IML code presented in the Appendix
#   of Bernaards & Jennrich (2005)
# - as the orthogonal and oblique algorithm are so similar, they are
#   combined in a single function
# - the default is oblique rotation
#
lav_matrix_rotate_gpa <- function(A = NULL, # original matrix
                                  orthogonal = FALSE, # default is oblique
                                  init.ROT = NULL, # initial rotation
                                  method.fname = NULL, # criterion function
                                  method.args = list(), # optional method args
                                  gpa.tol = 0.00001,
                                  max.iter = 10000L) {
  # number of columns
  M <- ncol(A)

  # transpose of A (not needed for orthogonal)
  At <- t(A)

  # check init.ROT
  if (is.null(init.ROT)) {
    ROT <- diag(M)
  } else {
    ROT <- init.ROT
  }

  # set initial value of alpha to 1
  alpha <- 1

  # initial rotation
  if (orthogonal) {
    LAMBDA <- A %*% ROT
  } else {
    LAMBDA <- t(solve(ROT, At))
  }

  # using the current LAMBDA, evaluate the user-specified
  # rotation criteron; return Q (the criterion) and its gradient Gq
  Q <- do.call(
    method.fname,
    c(list(LAMBDA = LAMBDA), method.args, list(grad = TRUE))
  )
  Gq <- attr(Q, "grad")
  attr(Q, "grad") <- NULL
  Q.current <- Q

  # compute gradient GRAD of f() at ROT from the gradient Gq of Q at LAMBDA
  # in a manner appropiate for orthogonal or oblique rotation
  if (orthogonal) {
    GRAD <- crossprod(A, Gq)
  } else {
    GRAD <- -1 * solve(t(init.ROT), crossprod(Gq, LAMBDA))
  }

  # start iterations
  converged <- FALSE
  for (iter in seq_len(max.iter + 1L)) {
    # compute projection Gp of GRAD onto the linear manifold tangent at
    # ROT to the manifold of orthogonal or normal (for oblique) matrices
    #
    # this projection is zero if and only if ROT is a stationary point of
    # f() restricted to the orthogonal/normal matrices
    if (orthogonal) {
      MM <- crossprod(ROT, GRAD)
      SYMM <- (MM + t(MM)) / 2
      Gp <- GRAD - (ROT %*% SYMM)
    } else {
      Gp <- GRAD - t(t(ROT) * colSums(ROT * GRAD))
    }

    # check Frobenius norm of Gp
    frob <- sqrt(sum(Gp * Gp))

    # if verbose, print
    if (lav_verbose()) {
      cat(
        "iter = ", sprintf("%4d", iter - 1),
        " Q = ", sprintf("%9.7f", Q.current),
        " frob.log10 = ", sprintf("%10.7f", log10(frob)),
        " alpha = ", sprintf("%9.7f", alpha), "\n"
      )
    }

    if (frob < gpa.tol) {
      converged <- TRUE
      break
    }

    # update
    alpha <- 2 * alpha
    for (i in seq_len(1000)) { # make option?

      # step in the negative projected gradient direction
      # (note, the original algorithm in Jennrich 2001 used G, not Gp)
      X <- ROT - alpha * Gp

      if (orthogonal) {
        # use SVD to compute the projection ROTt of X onto the manifold
        # of orthogonal matrices
        svd.out <- svd(X)
        U <- svd.out$u
        V <- svd.out$v
        ROTt <- U %*% t(V)
      } else {
        # compute the projection ROTt of X onto the manifold
        # of normal matrices
        v <- 1 / sqrt(apply(X^2, 2, sum))
        ROTt <- X %*% diag(v)
      }

      # rotate again
      if (orthogonal) {
        LAMBDA <- A %*% ROTt
      } else {
        LAMBDA <- t(solve(ROTt, At))
      }

      # evaluate criterion
      Q.new <- do.call(method.fname, c(
        list(LAMBDA = LAMBDA),
        method.args, list(grad = TRUE)
      ))
      Gq <- attr(Q.new, "grad")
      attr(Q.new, "grad") <- NULL

      # check stopping criterion
      if (Q.new < Q.current - 0.5 * frob * frob * alpha) {
        break
      } else {
        alpha <- alpha / 2
      }

      if (i == 1000) {
        lav_msg_warn(gettext("half-stepping failed in GPA"))
      }
    }

    # update
    ROT <- ROTt
    Q.current <- Q.new

    if (orthogonal) {
      GRAD <- crossprod(A, Gq)
    } else {
      GRAD <- -1 * solve(t(ROT), crossprod(Gq, LAMBDA))
    }
  } # iter

  # warn if no convergence
  if (!converged) {
    lav_msg_warn(gettextf(
      "GP rotation algorithm did not converge after %s iterations",
      max.iter
    ))
  }

  # algorithm information
  info <- list(
    algorithm = "gpa",
    iter = iter - 1L,
    converged = converged,
    method.value = Q.current
  )

  attr(ROT, "info") <- info

  ROT
}


# pairwise rotation algorithm with direct line search
#
# based on Kaiser's (1959) algorithm and Jennrich and Sampson (1966) algorithm
# but to make it generic, a line search is used; inspired by Browne 2001
#
# - orthogonal: rotate one pair of columns (=plane) at a time
# - oblique: rotate 1 factor in one pair of columns (=plane) at a time
#            note: in the oblique case, (1,2) is not the same as (2,1)
# - BUT use optimize() to find the optimal angle (for each plane)
#   (see Browne, 2001, page 130)
# - repeat until the changes in the f() criterion are below tol
#

lav_matrix_rotate_pairwise <- function(A = NULL, # original matrix
                                       orthogonal = FALSE,
                                       init.ROT = NULL,
                                       method.fname = NULL, # crit function
                                       method.args = list(), # method args
                                       tol = 1e-8,
                                       max.iter = 1000L) {
  # number of columns
  M <- ncol(A)

  # initial LAMBDA + PHI
  if (is.null(init.ROT)) {
    LAMBDA <- A
    if (!orthogonal) {
      PHI <- diag(M)
    }
  } else {
    if (orthogonal) {
      LAMBDA <- A %*% init.ROT
    } else {
      LAMBDA <- t(solve(init.ROT, t(A)))
      PHI <- crossprod(init.ROT)
    }
  }

  # using the current LAMBDA, evaluate the user-specified
  # rotation criteron; return Q (the criterion) only
  Q.current <- do.call(method.fname, c(
    list(LAMBDA = LAMBDA),
    method.args, list(grad = FALSE)
  ))

  # if verbose, print
  if (lav_verbose()) {
    cat(
      "iter = ", sprintf("%4d", 0),
      " Q = ", sprintf("%13.11f", Q.current), "\n"
    )
  }

  # plane combinations
  if (orthogonal) {
    PLANE <- utils::combn(M, 2)
  } else {
    tmp <- utils::combn(M, 2)
    PLANE <- cbind(tmp, tmp[c(2, 1), , drop = FALSE])
  }


  # define objective function -- orthogonal
  objf_orth <- function(theta = 0, A = NULL, col1 = 0L, col2 = 0L) {
    # construct ROT
    ROT <- diag(M)
    ROT[col1, col1] <- base::cos(theta)
    ROT[col1, col2] <- base::sin(theta)
    ROT[col2, col1] <- -1 * base::sin(theta)
    ROT[col2, col2] <- base::cos(theta)

    # rotate
    LAMBDA <- A %*% ROT

    # evaluate criterion
    Q <- do.call(method.fname, c(
      list(LAMBDA = LAMBDA),
      method.args, list(grad = FALSE)
    ))
    Q
  }

  # define objective function -- oblique
  objf_obliq <- function(delta = 0, A = NULL, col1 = 0L, col2 = 0L,
                         phi12 = 0) {
    # construct ROT
    ROT <- diag(M)

    # gamma
    gamma2 <- 1 + (2 * delta * phi12) + (delta * delta)

    ROT[col1, col1] <- sqrt(abs(gamma2))
    ROT[col1, col2] <- -1 * delta
    ROT[col2, col1] <- 0
    ROT[col2, col2] <- 1

    # rotate
    LAMBDA <- A %*% ROT

    # evaluate criterion
    Q <- do.call(method.fname, c(
      list(LAMBDA = LAMBDA),
      method.args, list(grad = FALSE)
    ))
    Q
  }

  # start iterations
  converged <- FALSE
  Q.old <- Q.current
  for (iter in seq_len(max.iter)) {
    # rotate - one cycle
    for (pl in seq_len(ncol(PLANE))) {
      # choose plane
      col1 <- PLANE[1, pl]
      col2 <- PLANE[2, pl]

      # optimize
      if (orthogonal) {
        out <- optimize(
          f = objf_orth, interval = c(-pi / 4, +pi / 4),
          A = LAMBDA, col1 = col1, col2 = col2,
          maximum = FALSE, tol = .Machine$double.eps^0.25
        )
        # best rotation - for this plane
        theta <- out$minimum

        # construct ROT
        ROT <- diag(M)
        ROT[col1, col1] <- base::cos(theta)
        ROT[col1, col2] <- base::sin(theta)
        ROT[col2, col1] <- -1 * base::sin(theta)
        ROT[col2, col2] <- base::cos(theta)
      } else {
        phi12 <- PHI[col1, col2]
        out <- optimize(
          f = objf_obliq, interval = c(-1, +1),
          A = LAMBDA, col1 = col1, col2 = col2,
          phi12 = phi12,
          maximum = FALSE, tol = .Machine$double.eps^0.25
        )

        # best rotation - for this plane
        delta <- out$minimum

        # construct ROT
        ROT <- diag(M)

        # gamma
        gamma2 <- 1 + (2 * delta * phi12) + (delta * delta)
        gamma <- sqrt(abs(gamma2))

        ROT[col1, col1] <- gamma
        ROT[col1, col2] <- -1 * delta
        ROT[col2, col1] <- 0
        ROT[col2, col2] <- 1
      }

      # rotate
      LAMBDA <- LAMBDA %*% ROT

      if (!orthogonal) {
        # rotate PHI
        PHI[col1, ] <- (1 / gamma) * PHI[col1, ] + (delta / gamma) * PHI[col2, ]
        PHI[, col1] <- PHI[col1, ]
        PHI[col1, col1] <- 1
      }
    } # all planes

    # check for convergence
    Q.current <- do.call(method.fname, c(
      list(LAMBDA = LAMBDA),
      method.args, list(grad = FALSE)
    ))

    # absolute change in Q
    diff <- abs(Q.old - Q.current)

    # if verbose, print
    if (lav_verbose()) {
      cat(
        "iter = ", sprintf("%4d", iter),
        " Q = ", sprintf("%13.11f", Q.current),
        " change = ", sprintf("%13.11f", diff), "\n"
      )
    }

    if (diff < tol) {
      converged <- TRUE
      break
    } else {
      Q.old <- Q.current
    }
  } # iter

  # warn if no convergence
  if (!converged) {
    lav_msg_warn(gettextf(
      "pairwise rotation algorithm did not converge after %s iterations",
      max.iter
    ))
  }

  # compute final rotation matrix
  if (orthogonal) {
    ROT <- solve(crossprod(A), crossprod(A, LAMBDA))
  } else {
    # to be compatible with GPa
    ROTt.inv <- solve(crossprod(A), crossprod(A, LAMBDA))
    ROT <- solve(t(ROTt.inv))
  }

  # algorithm information
  info <- list(
    algorithm = "pairwise",
    iter = iter,
    converged = converged,
    method.value = Q.current
  )

  attr(ROT, "info") <- info

  ROT
}

Try the lavaan package in your browser

Any scripts or data that you put into this service are public.

lavaan documentation built on Sept. 27, 2024, 9:07 a.m.