Nothing
# constructor of the matrix lavoptions$representation
#
# initial version: YR 22/11/2010
# - YR 14 Jan 2014: moved to lav_model.R
# - YR 18 Nov 2014: more efficient handling of linear equality constraints
# - YR 02 Dec 2014: allow for bare-minimum parameter tables
# - YR 25 Jan 2017: collect options in lavoptions
# - YR 12 Mar 2021: add lavpta as argument; create model attributes (ma)
# construct MATRIX lavoptions$representation of the model
lav_model <- function(lavpartable = NULL, # nolint
lavoptions = NULL,
th.idx = list()) {
# handle bare-minimum partables
lavpartable <- lav_partable_complete(lavpartable)
lavpta = lav_partable_attributes(lavpartable)
lavpartable <- lav_partable_set_cache(lavpartable, lavpta)
# global info from user model
nblocks <- lav_partable_nblocks(lavpartable)
ngroups <- lav_partable_ngroups(lavpartable)
meanstructure <- any(lavpartable$op == "~1")
correlation <- lavoptions$correlation
if (is.null(correlation)) {
correlation <- FALSE
}
categorical <- any(lavpartable$op == "|")
if (categorical) {
meanstructure <- TRUE
# handle th.idx if length(th.idx) != nblocks
if (nblocks != length(th.idx)) {
th.idx <- rep(th.idx, each = nblocks)
}
}
group.w.free <- any(lavpartable$lhs == "group" & lavpartable$op == "%")
multilevel <- FALSE
if (!is.null(lavpartable$level)) {
nlevels <- lav_partable_nlevels(lavpartable)
if (nlevels > 1L) {
multilevel <- TRUE
}
} else {
nlevels <- 1L
}
nefa <- lav_partable_nefa(lavpartable)
if (nefa > 0L) {
efa.values <- lav_partable_efa_values(lavpartable)
}
# check for simple equality constraints
eq.simple <- any(lavpartable$free > 0L & duplicated(lavpartable$free))
if (eq.simple) {
# just like in <0.5-18, add (temporary) 'unco' column
# so we can fill in x.unco.idx
lavpartable$unco <- integer(length(lavpartable$id))
idx.free <- which(lavpartable$free > 0L)
lavpartable$unco[idx.free] <- seq_along(idx.free)
}
# handle variable definitions and (in)equality constraints
tmp.con <- lav_constraints_parse(
partable = lavpartable,
constraints = NULL
)
# handle *linear* equality constraints special
if (tmp.con$ceq.linear.only.flag) {
con.jac <- tmp.con$ceq.JAC
con.lambda <- numeric(nrow(tmp.con$ceq.JAC))
attr(con.jac, "inactive.idx") <- integer(0L)
attr(con.jac, "ceq.idx") <- seq_len(nrow(tmp.con$ceq.JAC))
} else {
con.jac <- matrix(0, 0, 0)
con.lambda <- numeric(0)
}
# select model matrices
if (lavoptions$representation == "LISREL") {
tmp.rep <- lav_lisrel(lavpartable, target = NULL, extra = TRUE)
} else if (lavoptions$representation == "RAM") {
tmp.rep <- lav_ram(lavpartable, target = NULL, extra = TRUE)
} else {
lav_msg_stop(gettextf(
"%1$s argument must be either %2$s or %3$s",
"representation", "LISREL", "RAM"))
}
if (lav_debug()) print(tmp.rep)
# FIXME: check for non-existing parameters
bad.idx <- which((tmp.rep$mat == "" | is.na(tmp.rep$row) | is.na(tmp.rep$col)) &
!lavpartable$op %in% c("==", "<", ">", ":="))
if (length(bad.idx) > 0L) {
this.formula <- paste(lavpartable$lhs[bad.idx[1]],
lavpartable$op[bad.idx[1]],
lavpartable$rhs[bad.idx[1]],
sep = " "
)
if (lavoptions$representation == "LISREL") {
lav_msg_stop(gettextf(
"a model parameter is not defined in the LISREL representation %s.
Upgrade to latent variables or consider using representation = 'RAM'.",
this.formula) )
} else {
lav_msg_stop(
gettextf("parameter is not defined: %s", this.formula)
)
}
}
# prepare nG-sized slots
tmp.ng <- sum(unlist(attr(tmp.rep, "mmNumber")))
tmp.glist <- vector(mode = "list", tmp.ng)
names(tmp.glist) <- unlist(attr(tmp.rep, "mmNames"))
dim.names <- vector(mode = "list", length = tmp.ng)
is.symmetric <- logical(tmp.ng)
mm.size <- integer(tmp.ng)
m.free.idx <- m.user.idx <- vector(mode = "list", length = tmp.ng)
x.free.idx <- x.unco.idx <- x.user.idx <- vector(
mode = "list",
length = tmp.ng
)
# prepare nblocks-sized slots
nvar <- integer(nblocks)
nmat <- unlist(attr(tmp.rep, "mmNumber"))
num.idx <- vector("list", length = nblocks)
nexo <- integer(nblocks)
ov.x.dummy.ov.idx <- vector(mode = "list", length = nblocks)
ov.x.dummy.lv.idx <- vector(mode = "list", length = nblocks)
ov.y.dummy.ov.idx <- vector(mode = "list", length = nblocks)
ov.y.dummy.lv.idx <- vector(mode = "list", length = nblocks)
ov.efa.idx <- vector(mode = "list", length = nblocks)
lv.efa.idx <- vector(mode = "list", length = nblocks)
offset <- 0L
# keep track of ov.names across blocks
for (g in 1:nblocks) {
# observed and latent variables for this block
ov.names <- lav_partable_vnames(lavpartable, "ov", block = g)
ov.names.nox <- lav_partable_vnames(lavpartable, "ov.nox", block = g)
ov.names.x <- lav_partable_vnames(lavpartable, "ov.x", block = g)
ov.num <- lav_partable_vnames(lavpartable, "ov.num", block = g)
if (lavoptions$conditional.x) {
if (nlevels > 1L) {
if (ngroups == 1L) {
other.block.names <- lav_partable_vnames(lavpartable, "ov",
block = seq_len(nblocks)[-g]
)
} else {
# TEST ME!
# which group is this?
this.group <- ceiling(g / nlevels)
blocks.within.group <- (this.group - 1L) * nlevels + seq_len(nlevels)
other.block.names <- lav_partable_vnames(lavpartable, "ov",
block = blocks.within.group[-g]
)
}
if (length(ov.names.x) > 0L) {
idx <- which(ov.names.x %in% other.block.names)
if (length(idx) > 0L) {
ov.names.nox <- unique(c(ov.names.nox, ov.names.x[idx]))
ov.names.x <- ov.names.x[-idx]
ov.names <- ov.names.nox
}
}
}
nvar[g] <- length(ov.names.nox)
if (correlation) {
num.idx[[g]] <- integer(0L)
} else {
num.idx[[g]] <- which(ov.names.nox %in% ov.num)
}
} else {
nvar[g] <- length(ov.names)
if (correlation) {
num.idx[[g]] <- integer(0L)
} else {
num.idx[[g]] <- which(ov.names %in% ov.num)
}
}
nexo[g] <- length(ov.names.x)
if (nefa > 0L) {
lv.names <- lav_partable_vnames(lavpartable, "lv", block = g)
}
# model matrices for this block
mm.number <- attr(tmp.rep, "mmNumber")[[g]]
mm.names <- attr(tmp.rep, "mmNames")[[g]]
mm.symmetric <- attr(tmp.rep, "mmSymmetric")[[g]]
mm.dim.names <- attr(tmp.rep, "mmDimNames")[[g]]
mm.rows <- attr(tmp.rep, "mmRows")[[g]]
mm.cols <- attr(tmp.rep, "mmCols")[[g]]
for (mm in 1:mm.number) {
# offset in tmp.glist
offset <- offset + 1L
# matrix size, symmetric, dim.names
if (mm.symmetric[mm]) {
tmp.n <- mm.rows[mm]
mm.size <- as.integer(tmp.n * (tmp.n + 1) / 2)
} else {
mm.size <- as.integer(mm.rows[mm] * mm.cols[mm])
}
mm.size[offset] <- mm.size
is.symmetric[offset] <- mm.symmetric[mm]
dim.names[[offset]] <- mm.dim.names[[mm]]
# select elements for this matrix
idx <- which(lavpartable$block == g & tmp.rep$mat == mm.names[mm])
# create empty `pattern' matrix
# FIXME: one day, we may want to use sparse matrices...
# but they should not slow things down!
tmp <- matrix(0L,
nrow = mm.rows[mm],
ncol = mm.cols[mm]
)
# 1. first assign free values only, to get vector index
# -> to be used in lav_model_objective
tmp[cbind(tmp.rep$row[idx], tmp.rep$col[idx])] <- lavpartable$free[idx]
if (mm.symmetric[mm]) {
# NOTE: we assume everything is in the UPPER tri!
tmp.tt <- t(tmp)
tmp[lower.tri(tmp)] <- tmp.tt[lower.tri(tmp.tt)]
}
m.free.idx[[offset]] <- which(tmp > 0)
x.free.idx[[offset]] <- tmp[which(tmp > 0)]
# 2. if simple equality constraints, unconstrained free parameters
# -> to be used in lav_model_gradient
if (eq.simple) {
tmp[cbind(
tmp.rep$row[idx],
tmp.rep$col[idx]
)] <- lavpartable$unco[idx]
if (mm.symmetric[mm]) {
# NOTE: we assume everything is in the UPPER tri!
tmp.tt <- t(tmp)
tmp[lower.tri(tmp)] <- tmp.tt[lower.tri(tmp.tt)]
}
# m.unco.idx[[offset]] <- which(tmp > 0)
x.unco.idx[[offset]] <- tmp[which(tmp > 0)]
} else {
# m.unco.idx[[offset]] <- m.free.idx[[offset]]
x.unco.idx[[offset]] <- x.free.idx[[offset]]
}
# 3. general mapping between user and tmp.glist
tmp[cbind(tmp.rep$row[idx], tmp.rep$col[idx])] <- lavpartable$id[idx]
if (mm.symmetric[mm]) {
tmp.tt <- t(tmp)
tmp[lower.tri(tmp)] <- tmp.tt[lower.tri(tmp.tt)]
}
m.user.idx[[offset]] <- which(tmp > 0)
x.user.idx[[offset]] <- tmp[which(tmp > 0)]
# 4. now assign starting/fixed values
# create empty matrix
# FIXME: again, we may want to use sparse matrices here...
tmp <- matrix(0.0,
nrow = mm.rows[mm],
ncol = mm.cols[mm]
)
tmp[cbind(tmp.rep$row[idx], tmp.rep$col[idx])] <- lavpartable$start[idx]
if (mm.symmetric[mm]) {
tmp.tt <- t(tmp)
tmp[lower.tri(tmp)] <- tmp.tt[lower.tri(tmp.tt)]
}
# 4b. override with cov.x (if conditional.x = TRUE)
# new in 0.6-1
# shouldn't be needed, if lavpartable$start contains cov.x values
# if(mm.names[mm] == "cov.x") {
# tmp <- cov.x[[g]]
# }
# 4c. override with mean.x (if conditional.x = TRUE)
# new in 0.6-1
# shouldn't be needed, if lavpartable$start contains mean.x values
# if(mm.names[mm] == "mean.x") {
# tmp <- as.matrix(mean.x[[g]])
# }
# representation specific stuff
if (lavoptions$representation == "LISREL" &&
mm.names[mm] == "lambda") {
ov.dummy.names.nox <- attr(tmp.rep, "ov.dummy.names.nox")[[g]]
ov.dummy.names.x <- attr(tmp.rep, "ov.dummy.names.x")[[g]]
ov.dummy.names <- c(ov.dummy.names.nox, ov.dummy.names.x)
# define dummy latent variables
if (length(ov.dummy.names)) {
# in this case, lv.names will be extended with the dummys
tmp.lv.names <- mm.dim.names$psi[[1]]
row.tmp.idx <- match(ov.dummy.names, ov.names)
col.tmp.idx <- match(ov.dummy.names, tmp.lv.names)
# Fix lambda values to 1.0
tmp[cbind(row.tmp.idx, col.tmp.idx)] <- 1.0
ov.x.dummy.ov.idx[[g]] <- match(ov.dummy.names.x, ov.names)
ov.x.dummy.lv.idx[[g]] <- match(ov.dummy.names.x, tmp.lv.names)
ov.y.dummy.ov.idx[[g]] <- match(ov.dummy.names.nox, ov.names)
ov.y.dummy.lv.idx[[g]] <- match(ov.dummy.names.nox, tmp.lv.names)
}
}
# representation specific
if (lavoptions$representation == "LISREL" && mm.names[mm] == "delta") {
# only categorical values are listed in the lavpartable
# but all remaining values should be 1.0
idx <- which(tmp[, 1L] == 0.0)
tmp[idx, 1L] <- 1.0
}
# representation specific
if (lavoptions$representation == "RAM" && mm.names[mm] == "ov.idx") {
tmp[1, ] <- attr(tmp.rep, "ov.idx")[[g]]
}
# assign matrix to tmp.glist
tmp.glist[[offset]] <- tmp
} # mm
# efa related info
if (nefa > 0L) {
ov.efa.idx[[g]] <- vector("list", length = nefa)
lv.efa.idx[[g]] <- vector("list", length = nefa)
for (set in seq_len(nefa)) {
# determine ov idx for this set
ov.efa <-
unique(lavpartable$rhs[lavpartable$op == "=~" &
lavpartable$block == g &
lavpartable$efa == efa.values[set]])
ov.efa.idx[[g]][[set]] <- match(ov.efa, ov.names)
lv.efa <-
unique(lavpartable$lhs[lavpartable$op == "=~" &
lavpartable$block == g &
lavpartable$efa == efa.values[set]])
lv.efa.idx[[g]][[set]] <- match(lv.efa, lv.names)
}
names(ov.efa.idx[[g]]) <- efa.values
names(lv.efa.idx[[g]]) <- efa.values
} # efa
} # g
# fixed.x parameters?
# fixed.x <- any(lavpartable$exo > 0L & lavpartable$free == 0L)
# if(categorical) {
# fixed.x <- TRUE
# }
# dirty hack to mimic MUML
if (!is.null(lavoptions$tech.muml.scale)) {
lav_msg_warn(gettext("using muml scale in group 2"))
# find matrix
lambda.idx <- which(names(tmp.glist) == "lambda")[2L]
# find rows/cols
b.names <- paste0("b", ov.names) ## ad-hoc assumption!!!
tmp.cols <- match(b.names, tmp.lv.names)
tmp.rows <- seq_len(nvar[2])
stopifnot(length(tmp.cols) == length(tmp.rows))
tmp.glist[[lambda.idx]][cbind(tmp.rows, tmp.cols)] <-
lavoptions$tech.muml.scale
}
# which free parameters are observed variances?
ov.names <- vnames(lavpartable, "ov")
x.free.var.idx <- lavpartable$free[lavpartable$free &
# !duplicated(lavpartable$free) &
lavpartable$lhs %in% ov.names &
lavpartable$op == "~~" &
lavpartable$lhs == lavpartable$rhs]
rv.lv <- rv.ov <- list()
if (multilevel) {
# store information about random slopes (if any)
lv.names <- lav_partable_vnames(lavpartable, "lv")
# we should also add splitted-y names (x) to lv.names
# FIXME: make this work for multiple work multilevel
level.values <- lav_partable_level_values(lavpartable)
ovx1 <- lavNames(lavpartable, "ov.x", level = level.values[1])
ovx2 <- lavNames(lavpartable, "ov.x", level = level.values[2])
ovx12 <- ovx2[ovx2 %in% ovx1]
lv.names <- c(lv.names, ovx12)
# RV LV
rv.idx <- which(nchar(lavpartable$rv) > 0L &
lavpartable$level == level.values[1] &
lavpartable$rhs %in% lv.names)
if (length(rv.idx)) {
rv.lv <- lapply(rv.idx, function(x) {
c(lavpartable$lhs[x], lavpartable$rhs[x])
})
names(rv.lv) <- lavpartable$rv[rv.idx]
}
# RV OV
rv.idx <- which(nchar(lavpartable$rv) > 0L &
lavpartable$level == level.values[1] &
!lavpartable$rhs %in% lv.names)
if (length(rv.idx)) {
rv.ov <- lapply(rv.idx, function(x) {
c(lavpartable$lhs[x], lavpartable$rhs[x])
})
names(rv.ov) <- lavpartable$rv[rv.idx]
}
} # multilevel
# new in 0.6-9: model properties
modprop <- lav_model_properties(
GLIST = tmp.glist,
lavpartable = lavpartable,
nmat = nmat,
m.free.idx = m.free.idx
)
tmp.model <- new("lavModel",
GLIST = tmp.glist,
dimNames = dim.names,
isSymmetric = is.symmetric,
mmSize = mm.size,
representation = lavoptions$representation,
modprop = modprop,
meanstructure = meanstructure,
correlation = correlation,
categorical = categorical,
multilevel = multilevel,
link = lavoptions$link,
nblocks = nblocks,
ngroups = ngroups, # breaks rsem????
nefa = nefa,
group.w.free = group.w.free,
nmat = nmat,
nvar = nvar,
num.idx = num.idx,
th.idx = th.idx,
nx.free = max(lavpartable$free),
nx.unco = if (is.null(lavpartable$unco)) {
max(lavpartable$free)
} else {
max(lavpartable$unco)
},
nx.user = max(lavpartable$id),
m.free.idx = m.free.idx,
x.free.idx = x.free.idx,
x.free.var.idx = x.free.var.idx,
# m.unco.idx=m.unco.idx,
x.unco.idx = x.unco.idx,
m.user.idx = m.user.idx,
x.user.idx = x.user.idx,
x.def.idx = which(lavpartable$op == ":="),
x.ceq.idx = which(lavpartable$op == "=="),
x.cin.idx = which(lavpartable$op == ">" | lavpartable$op == "<"),
ceq.simple.only = tmp.con$ceq.simple.only,
ceq.simple.K = tmp.con$ceq.simple.K,
eq.constraints = tmp.con$ceq.linear.only.flag,
eq.constraints.K = tmp.con$ceq.JAC.NULL,
eq.constraints.k0 = tmp.con$ceq.rhs.NULL,
def.function = tmp.con$def.function,
ceq.function = tmp.con$ceq.function,
ceq.JAC = tmp.con$ceq.JAC,
ceq.rhs = tmp.con$ceq.rhs,
ceq.jacobian = tmp.con$ceq.jacobian,
ceq.linear.idx = tmp.con$ceq.linear.idx,
ceq.nonlinear.idx = tmp.con$ceq.nonlinear.idx,
cin.simple.only = tmp.con$cin.simple.only,
cin.function = tmp.con$cin.function,
cin.JAC = tmp.con$cin.JAC,
cin.rhs = tmp.con$cin.rhs,
cin.jacobian = tmp.con$cin.jacobian,
cin.linear.idx = tmp.con$cin.linear.idx,
cin.nonlinear.idx = tmp.con$cin.nonlinear.idx,
con.jac = con.jac,
con.lambda = con.lambda,
nexo = nexo,
fixed.x = lavoptions$fixed.x,
conditional.x = lavoptions$conditional.x,
parameterization = lavoptions$parameterization,
ov.x.dummy.ov.idx = ov.x.dummy.ov.idx,
ov.x.dummy.lv.idx = ov.x.dummy.lv.idx,
ov.y.dummy.ov.idx = ov.y.dummy.ov.idx,
ov.y.dummy.lv.idx = ov.y.dummy.lv.idx,
ov.efa.idx = ov.efa.idx,
lv.efa.idx = lv.efa.idx,
rv.lv = rv.lv,
rv.ov = rv.ov,
estimator = lavoptions$estimator,
estimator.args = lavoptions$estimator.args
)
if (lav_debug()) {
cat("lavaan debug: lavaanModel\n")
print(str(tmp.model))
print(tmp.model@GLIST)
}
tmp.model
}
# for backwards compatibility
# tmp.model <- lav_model
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.