Nothing
#' meta: Brief overview of methods and general hints
#'
#' @description
#' R package \bold{meta} is a user-friendly general package providing
#' standard methods for meta-analysis and supporting Schwarzer et
#' al. (2015),
#' \url{https://link.springer.com/book/10.1007/978-3-319-21416-0}.
#'
#' @details
#' R package \bold{meta} (Schwarzer, 2007; Balduzzi et al., 2019)
#' provides the following statistical methods for meta-analysis.
#' \enumerate{
#' \item Common effect (also called fixed effect) and random effects model:
#' \itemize{
#' \item Meta-analysis of continuous outcome data (\code{\link{metacont}})
#' \item Meta-analysis of binary outcome data (\code{\link{metabin}})
#' \item Meta-analysis of incidence rates (\code{\link{metainc}})
#' \item Generic inverse variance meta-analysis (\code{\link{metagen}})
#' \item Meta-analysis of single correlations (\code{\link{metacor}})
#' \item Meta-analysis of single means (\code{\link{metamean}})
#' \item Meta-analysis of single proportions (\code{\link{metaprop}})
#' \item Meta-analysis of single incidence rates (\code{\link{metarate}})
#' }
#' \item Several plots for meta-analysis:
#' \itemize{
#' \item Forest plot (\code{\link{forest.meta}}, \code{\link{forest.metabind}})
#' \item Funnel plot (\code{\link{funnel.meta}})
#' \item Galbraith plot / radial plot (\code{\link{radial.meta}})
#' \item L'Abbe plot for meta-analysis with binary outcome data
#' (\code{\link{labbe.metabin}}, \code{\link{labbe.default}})
#' \item Baujat plot to explore heterogeneity in meta-analysis
#' (\code{\link{baujat.meta}})
#' \item Bubble plot to display the result of a meta-regression
#' (\code{\link{bubble.metareg}})
#' }
#' \item Three-level meta-analysis model (Van den Noortgate et al.,
#' 2013)
#' \item Generalised linear mixed models (GLMMs) for binary and count
#' data (Stijnen et al., 2010) (\code{\link{metabin}},
#' \code{\link{metainc}}, \code{\link{metaprop}}, and
#' \code{\link{metarate}})
#' \item Various estimators for the between-study variance
#' \eqn{\tau^2} in a random effects model (Veroniki et al., 2016);
#' see description of argument \code{method.tau} below
#' \item Two methods to estimate the I-squared statistic
#' (Higgins and Thompson, 2002); see description of argument
#' \code{method.I2} below
#' \item Hartung-Knapp method for random effects meta-analysis
#' (Hartung & Knapp, 2001a,b), see description of arguments
#' \code{method.random.ci} and \code{adhoc.hakn.ci} below
#' \item Kenward-Roger method for random effects meta-analysis
#' (Partlett and Riley, 2017), see description of arguments
#' \code{method.random.ci} and \code{method.predict} below
#' \item Prediction interval for the treatment effect of a new study
#' (Veroniki et al., 2019; Higgins et al., 2009; Partlett and Riley, 2017;
#' Nagashima et al., 2019), see description of argument \code{method.predict}
#' below
#' \item Statistical tests for funnel plot asymmetry
#' (\code{\link{metabias.meta}}, \code{\link{metabias.rm5}}) and
#' trim-and-fill method (\code{\link{trimfill.meta}},
#' \code{\link{trimfill.default}}) to evaluate bias in meta-analysis
#' \item Meta-regression (\code{\link{metareg}})
#' \item Cumulative meta-analysis (\code{\link{metacum}}) and
#' leave-one-out meta-analysis (\code{\link{metainf}})
#' \item Import data from RevMan Web (\code{\link{read.cdir}}), RevMan
#' 5 (\code{\link{read.rm5}}), see also \code{\link{metacr}} to
#' conduct meta-analysis for a single comparison and outcome from a
#' Cochrane review
#' }
#'
#' R package \bold{meta} provides two vignettes:
#' \itemize{
#' \item \code{vignette("meta-workflow")} with an overview of main
#' functions,
#' \item \code{vignette("meta-tutorial")} with up-to-date commands for
#' Balduzzi et al. (2019).
#' }
#'
#' Additional statistical meta-analysis methods are provided by add-on
#' R packages:
#' \itemize{
#' \item Frequentist methods for network meta-analysis (R package
#' \bold{netmeta})
#' \item Statistical methods for sensitivity analysis in meta-analysis
#' (R package \bold{metasens})
#' \item Statistical methods for meta-analysis of diagnostic accuracy
#' studies with several cutpoints (R package \bold{diagmeta})
#' }
#'
#' In the following, more details on available and default statistical
#' meta-analysis methods are provided and R function
#' \code{\link{settings.meta}} is briefly described which can be used
#' to change the default settings. Additional information on
#' meta-analysis objects and available summary measures can be found
#' on the help pages \code{\link{meta-object}} and
#' \code{\link{meta-sm}}.
#'
#' \subsection{Estimation of between-study variance}{
#'
#' The following methods are available in all meta-analysis functions
#' to estimate the between-study variance \eqn{\tau^2}.
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{Method} \cr
#' \code{method.tau = "REML"}
#' \tab Restricted maximum-likelihood estimator (Viechtbauer, 2005) \cr
#' \tab (default) \cr
#' \code{method.tau = "PM"}
#' \tab Paule-Mandel estimator (Paule and Mandel, 1982) \cr
#' \code{method.tau = "DL"}
#' \tab DerSimonian-Laird estimator (DerSimonian and Laird, 1986) \cr
#' \code{method.tau = "ML"}
#' \tab Maximum-likelihood estimator (Viechtbauer, 2005) \cr
#' \code{method.tau = "HS"}
#' \tab Hunter-Schmidt estimator (Hunter and Schmidt, 2015) \cr
#' \code{method.tau = "SJ"}
#' \tab Sidik-Jonkman estimator (Sidik and Jonkman, 2005) \cr
#' \code{method.tau = "HE"}
#' \tab Hedges estimator (Hedges and Olkin, 1985) \cr
#' \code{method.tau = "EB"}
#' \tab Empirical Bayes estimator (Morris, 1983)
#' }
#'
#' For GLMMs, only the maximum-likelihood method is available.
#'
#' Historically, the DerSimonian-Laird method was the de facto
#' standard to estimate the between-study variance \eqn{\tau^2} and is
#' the default in some software packages including Review Manager 5
#' (RevMan 5) and R package \bold{meta}, version 4 and below. However,
#' its role has been challenged and especially the REML and
#' Paule-Mandel estimators have been recommended (Veroniki et al.,
#' 2016; Langan et al., 2019). Accordingly, the currenct default in R
#' package \bold{meta} is the REML estimator.
#'
#' The following R command could be used to employ the Paule-Mandel
#' instead of the REML estimator in all meta-analyses of the current R
#' session:
#' \itemize{
#' \item \code{settings.meta(method.tau = "PM")}
#' }
#'
#' Other estimators for \eqn{\tau^2} could be selected in a similar
#' way.
#'
#' Note, for binary outcomes, two variants of the DerSimonian-Laird
#' estimator are available if the Mantel-Haenszel method is used for
#' pooling. If argument \code{Q.Cochrane = TRUE} (default), the
#' heterogeneity statistic Q is based on the Mantel-Haenszel instead
#' of the inverse variance estimator under the common effect
#' model. This is the estimator for \eqn{\tau^2} implemented in RevMan
#' 5.
#' }
#'
#'
#' \subsection{Estimation of I-squared statistic}{
#'
#' The following methods are available in all meta-analysis functions
#' to estimate the I-squared statistic (Higgins and Thompson, 2002).
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{Method} \cr
#' \code{method.I2 = "Q"}
#' \tab Based on heterogeneity statistic Q (default) \cr
#' \code{method.I2 = "tau2"}
#' \tab Based on between-study variance \eqn{\tau^2}
#' }
#'
#' Using \code{method.I2 = "Q"} (Higgins and Thompson, 2002, section 3.3), the
#' value of I\eqn{^2} does not change if the estimate of \eqn{\tau^2} changes.
#' Furthermore, the value of I\eqn{^2} and the test of heterogeneity based on
#' the Q statistic are in agreement. R package \bold{metafor} uses the second
#' method (\code{method.I2 = "tau2"}) which is described in Higgins and Thompson
#' (2002), section 3.2. This method is more general in the way that the value
#' of I\eqn{^2} changes with the estimate of \eqn{\tau^2}.
#' }
#'
#' \subsection{Confidence interval for random effects estimate}{
#'
#' The following methods are available in all meta-analysis functions
#' to calculate a confidence interval for the random effects estimate.
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{Method} \cr
#' \code{method.random.ci = "classic"} \tab Based on standard normal
#' quantile \cr
#' \tab (DerSimonian and Laird, 1986) (default) \cr
#' \code{method.random.ci = "HK"} \tab Method by Hartung and Knapp
#' (2001a/b) \cr
#' \code{method.random.ci = "KR"} \tab Kenward-Roger method (Partlett and
#' Riley, 2017)
#' }
#'
#' DerSimonian and Laird (1986) introduced the classic random effects
#' model using a quantile of the standard normal distribution to
#' calculate a confidence interval for the random effects
#' estimate. This method implicitly assumes that the weights in the
#' random effects meta-analysis are not estimated but
#' given. Particularly, the uncertainty in the estimation of the
#' between-study variance \eqn{\tau^2} is ignored.
#'
#' Hartung and Knapp (2001a,b) proposed an alternative method for
#' random effects meta-analysis based on a refined variance estimator
#' for the treatment estimate and a quantile of a
#' \emph{t}-distribution with \emph{k-1} degrees of freedom where
#' \emph{k} corresponds to the number of studies in the
#' meta-analysis.
#'
#' The Kenward-Roger method is only available for the REML estimator
#' (\code{method.tau = "REML"}) of the between-study variance
#' \eqn{\tau^2} (Partlett and Riley, 2017). This method is based on an
#' adjusted variance estimate for the random effects
#' estimate. Furthermore, a quantile of a \emph{t}-distribution with
#' adequately modified degrees of freedom is used to calculate the
#' confidence interval.
#'
#' For GLMMs and three-level models, the Kenward-Roger method is not
#' available, but a method similar to Knapp and Hartung (2003) is used
#' if \code{method.random.ci = "HK"}. For this method, the variance
#' estimator is not modified, however, a quantile of a
#' \emph{t}-distribution with \emph{k-1} degrees of freedom is used;
#' see description of argument \code{test} in
#' \code{\link[metafor]{rma.glmm}} and \code{\link[metafor]{rma.mv}}.
#'
#' Simulation studies (Hartung and Knapp, 2001a,b; IntHout et al.,
#' 2014; Langan et al., 2019) show improved coverage probabilities of
#' the Hartung-Knapp method compared to the classic random effects
#' method. However, in rare settings with very homogeneous treatment
#' estimates, the Hartung-Knapp variance estimate can be arbitrarily
#' small resulting in a very narrow confidence interval (Knapp and
#' Hartung, 2003; Wiksten et al., 2016). In such cases, an \emph{ad
#' hoc} variance correction has been proposed by utilising the
#' variance estimate from the classic random effects model with the
#' Hartung-Knapp method (Knapp and Hartung, 2003; IQWiQ, 2022). An
#' alternative \emph{ad hoc} approach is to use the confidence
#' interval of the classic common or random effects meta-analysis if
#' it is wider than the interval from the Hartung-Knapp method
#' (Wiksten et al., 2016; Jackson et al., 2017).
#'
#' Argument \code{adhoc.hakn.ci} can be used to choose the \emph{ad
#' hoc} correction for the Hartung-Knapp (HK) method:
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{\emph{Ad hoc} method} \cr
#' \code{adhoc.hakn.ci = ""} \tab no \emph{ad hoc} correction (default)
#' \cr
#' \code{adhoc.hakn.ci = "se"} \tab use variance correction if HK standard
#' error is smaller \cr
#' \tab than standard error from classic random effects
#' \cr
#' \tab meta-analysis (Knapp and Hartung, 2003) \cr
#' \code{adhoc.hakn.ci = "IQWiG6"} \tab use variance correction if HK
#' confidence interval \cr
#' \tab is narrower than CI from classic random effects model \cr
#' \tab with DerSimonian-Laird estimator (IQWiG, 2022) \cr
#' \code{adhoc.hakn.ci = "ci"} \tab use wider confidence interval of
#' classic random effects \cr
#' \tab and HK meta-analysis \cr
#' \tab (Hybrid method 2 in Jackson et al., 2017)
#' }
#'
#' For GLMMs and three-level models, the \emph{ad hoc} variance
#' corrections are not available.
#' }
#'
#' \subsection{Prediction interval}{
#'
#' The following methods are available in all meta-analysis functions
#' to calculate a prediction interval for the treatment effect in a
#' single new study.
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{Method} \cr
#' \code{method.predict = "V"} \tab Based on \emph{t}-distribution
#' with \emph{k-1} degrees of freedom \cr
#' \tab (Veroniki et al., 2019) (default) \cr
#' \code{method.predict = "HTS"} \tab Based on \emph{t}-distribution
#' with \emph{k-2} degrees of freedom \cr
#' \tab (Higgins et al., 2009) \cr
#' \code{method.predict = "HK"} \tab Based on Hartung-Knapp standard error
#' and \cr
#' \tab \emph{t}-distribution with \emph{k-1} degrees of freedom \cr
#' \code{method.predict = "HK-PR"} \tab Based on Hartung-Knapp standard error
#' and \cr
#' \tab \emph{t}-distribution with \emph{k-2} degrees of freedom \cr
#' \tab (Partlett and Riley, 2017) \cr
#' \code{method.predict = "KR"} \tab Based on Kenward-Roger standard error
#' and \cr
#' \tab \emph{t}-distribution with approximate Kenward-Roger \cr
#' \tab degrees of freedom \cr
#' \code{method.predict = "KR-PR"} \tab Based on Kenward-Roger standard error
#' and \cr
#' \tab \emph{t}-distribution with approximate Kenward-Roger \cr
#' \tab degrees of freedom minus 1 (Partlett and Riley, 2017) \cr
#' \code{method.predict = "NNF"} \tab Bootstrap approach (Nagashima et
#' al., 2019) \cr
#' \code{method.predict = "S"} \tab Based on standard normal quantile
#' (Skipka, 2006)
#' }
#'
#' By default (\code{method.predict = "V"}), the prediction interval
#' is based on a \emph{t}-distribution with \emph{k-1} degrees of
#' freedom where \emph{k} corresponds to the number of studies in the
#' meta-analysis (Veroniki et al., 2019). The method by Higgins et al., (2009),
#' which is based on a \emph{t}-distribution with \emph{k-2} degrees of freedom,
#' has been the default in R package \bold{meta}, version 7.0-0 or lower.
#'
#' The Hartung-Knapp prediction intervals are also based on a
#' \emph{t}-distribution, however, use a different standard error.
#'
#' The Kenward-Roger method is only available for the REML estimator
#' (\code{method.tau = "REML"}) of the between-study variance
#' \eqn{\tau^2} (Partlett and Riley, 2017). This method is based on an
#' adjusted variance estimate for the random effects
#' estimate. Furthermore, a quantile of a \emph{t}-distribution with
#' adequately modified degrees of freedom is used to calculate the prediction
#' interval.
#'
#' The bootstrap approach is only available if R package \bold{pimeta}
#' is installed (Nagashima et al., 2019). Internally, the
#' \code{\link[pimeta]{pima}} function is called with argument
#' \code{method = "boot"}. Argument \code{seed.predict} can be used to
#' get a reproducible bootstrap prediction interval and argument
#' \code{seed.predict.subgroup} for reproducible bootstrap prediction
#' intervals in subgroups.
#'
#' The method of Skipka (2006) ignores the uncertainty in the
#' estimation of the between-study variance \eqn{\tau^2} and thus has
#' too narrow limits for meta-analyses with a small number of studies.
#'
#' For GLMMs and three-level models, only the methods by Veroniki et al.
#' (2019), Higgins et al. (2009) and Skipka (2006) are available. Argument
#' \code{method.predict = "V"} in R package \bold{meta} gives the same
#' prediction intervals as R functions \code{\link[metafor]{rma.glmm}} or
#' \code{\link[metafor]{rma.mv}} with argument \code{test = "t"}.
#'
#' Note, in R package \bold{meta}, version 7.0-0 or lower, the methods
#' \code{method.predict = "HK-PR"} and \code{method.predict = "KR-PR"} have
#' been available as \code{method.predict = "HK"} and
#' \code{method.predict = "KR"}.
#'
#' Argument \code{adhoc.hakn.pi} can be used to choose the \emph{ad
#' hoc} correction for the Hartung-Knapp method:
#'
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{\emph{Ad hoc} method} \cr
#' \code{adhoc.hakn.pi = ""} \tab no \emph{ad hoc} correction (default)
#' \cr
#' \code{adhoc.hakn.pi = "se"} \tab use variance correction if HK
#' standard error is smaller
#' }
#' }
#'
#' \subsection{Confidence interval for the between-study variance}{
#'
#' The following methods are available in all meta-analysis functions
#' to calculate a confidence interval for \eqn{\tau^2} and \eqn{\tau}.
#' \tabular{ll}{
#' \bold{Argument} \tab \bold{Method} \cr
#' \code{method.tau.ci = "J"} \tab Method by Jackson (2013) \cr
#' \code{method.tau.ci = "BJ"} \tab Method by Biggerstaff and Jackson (2008) \cr
#' \code{method.tau.ci = "QP"} \tab Q-Profile method (Viechtbauer, 2007) \cr
#' \code{method.tau.ci = "PL"} \tab Profile-Likelihood method for three-level \cr
#' \tab meta-analysis model (Van den Noortgate et al., 2013) \cr
#' \code{method.tau.ci = ""} \tab No confidence interval
#' }
#' The first three methods have been recommended by Veroniki et
#' al. (2016). By default, the Jackson method is used for the
#' DerSimonian-Laird estimator of \eqn{\tau^2} and the Q-profile
#' method for all other estimators of \eqn{\tau^2}.
#'
#' The Profile-Likelihood method is the only method available for the
#' three-level meta-analysis model.
#'
#' For GLMMs, no confidence intervals for \eqn{\tau^2} and \eqn{\tau}
#' are calculated.
#' }
#'
#' \subsection{Change default settings for R session}{
#'
#' R function \code{\link{settings.meta}} can be used to change the
#' previously described and several other default settings for the
#' current R session.
#'
#' Some pre-defined general settings are available:
#' \itemize{
#' \item \code{settings.meta("RevMan5")}
#' \item \code{settings.meta("JAMA")}
#' \item \code{settings.meta("BMJ")}
#' \item \code{settings.meta("IQWiG5")}
#' \item \code{settings.meta("IQWiG6")}
#' \item \code{settings.meta("geneexpr")}
#' }
#'
#' The first command can be used to reproduce meta-analyses from
#' Cochrane reviews conducted with \emph{Review Manager 5} (RevMan 5)
#' and specifies to use a RevMan 5 layout in forest plots.
#'
#' The second command can be used to generate forest plots following
#' instructions for authors of the \emph{Journal of the American
#' Medical Association}
#' (\url{https://jamanetwork.com/journals/jama/pages/instructions-for-authors/}). Study
#' labels according to JAMA guidelines can be generated using
#' \code{\link{labels.meta}}.
#'
#' The third command can be used to generate forest plots in the current layout
#' of the \emph{British Medical Journal}.
#'
#' The next two commands implement the recommendations of the
#' Institute for Quality and Efficiency in Health Care (IQWiG),
#' Germany accordinging to General Methods 5 and 6, respectively
#' (\url{https://www.iqwig.de/en/about-us/methods/methods-paper/}).
#'
#' The last setting can be used to print p-values in scientific
#' notation and to suppress the calculation of confidence intervals
#' for the between-study variance.
#'
#' See \code{\link{settings.meta}} for more details on these
#' pre-defined general settings.
#'
#' In addition, \code{\link{settings.meta}} can be used to define
#' individual settings for the current R session. For example, the
#' following R command specifies the use of Hartung-Knapp and
#' Paule-Mandel method, and the printing of prediction intervals for
#' any meta-analysis generated after execution of this command:
#' \itemize{
#' \item \code{settings.meta(method.random.ci = "HK", method.tau =
#' "PM", prediction = TRUE)}
#' }
#' }
#'
#' \subsection{Data sets}{
#' The following data sets are available in R package \bold{meta}.
#'
#' \tabular{ll}{
#' \bold{Data set} \tab \bold{Description} \cr
#' \code{\link{Fleiss1993bin}} \tab Aspirin after myocardial infarction \cr
#' \code{\link{Fleiss1993cont}} \tab Mental health treatment on medical utilisation\cr
#' \code{\link{Olkin1995}} \tab Thrombolytic therapy after acute myocardial infarction \cr
#' \code{\link{Pagliaro1992}} \tab Prevention of first bleeding in cirrhosis \cr
#' \code{\link{amlodipine}} \tab Amlodipine for work capacity \cr
#' \code{\link{caffeine}} \tab Caffeine for daytime drowsiness (Cochrane Practice review) \cr
#' \code{\link{cisapride}} \tab Cisapride in non-ulcer dispepsia \cr
#' \code{\link{lungcancer}} \tab Smoking example \cr
#' \code{\link{smoking}} \tab Smoking example \cr
#' \code{\link{woodyplants}} \tab Elevated CO$_2$ and total biomass of woody plants
#' }
#'
#' \bold{R} package \bold{metadat} has a large collection of meta-analysis data
#' sets.
#' }
#'
#' @note
#' Balduzzi et al. (2019) is the preferred citation in publications
#' for \bold{meta}. Type \code{citation("meta")} for a BibTeX entry of
#' this publication.
#'
#' Type \code{help(package = "meta")} for a listing of all R functions
#' and datasets available in \bold{meta}. For example, results of
#' several meta-analyses can be combined with \code{\link{metabind}}
#' which is useful to generate a forest plot with results of several
#' subgroup analyses.
#'
#' R package \bold{meta} imports R functions from \bold{metafor}
#' (Viechtbauer, 2010) to
#' \itemize{
#' \item estimate the between-study variance \eqn{\tau^2},
#' \item conduct meta-regression,
#' \item estimate three-level models,
#' \item estimate generalised linear mixed models.
#' }
#'
#' To report problems and bugs
#' \itemize{
#' \item type \code{bug.report(package = "meta")} if you do not use
#' RStudio,
#' \item send an email to Guido Schwarzer
#' \email{guido.schwarzer@@uniklinik-freiburg.de} if you use RStudio.
#' }
#'
#' The development version of \bold{meta} is available on GitHub
#' \url{https://github.com/guido-s/meta/}.
#'
#' @name meta-package
#'
#' @aliases meta-package meta
#'
#' @author Guido Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @references
#' Balduzzi S, Rücker G, Schwarzer G (2019):
#' How to perform a meta-analysis with R: a practical tutorial.
#' \emph{Evidence-Based Mental Health},
#' \bold{22}, 153--160
#'
#' Biggerstaff BJ, Jackson D (2008):
#' The exact distribution of Cochran’s heterogeneity statistic in
#' one-way random effects meta-analysis.
#' \emph{Statistics in Medicine},
#' \bold{27}, 6093--110
#'
#' DerSimonian R & Laird N (1986):
#' Meta-analysis in clinical trials.
#' \emph{Controlled Clinical Trials},
#' \bold{7}, 177--88
#'
#' Hartung J, Knapp G (2001a):
#' On tests of the overall treatment effect in meta-analysis with
#' normally distributed responses.
#' \emph{Statistics in Medicine},
#' \bold{20}, 1771--82
#'
#' Hartung J, Knapp G (2001b):
#' A refined method for the meta-analysis of controlled clinical
#' trials with binary outcome.
#' \emph{Statistics in Medicine},
#' \bold{20}, 3875--89
#'
#' Hedges LV & Olkin I (1985):
#' \emph{Statistical methods for meta-analysis}.
#' San Diego, CA: Academic Press
#'
#' Higgins JPT & Thompson SG (2002):
#' Quantifying heterogeneity in a meta-analysis.
#' \emph{Statistics in Medicine},
#' \bold{21}, 1539--58
#'
#' Higgins JPT, Thompson SG, Spiegelhalter DJ (2009):
#' A re-evaluation of random-effects meta-analysis.
#' \emph{Journal of the Royal Statistical Society: Series A},
#' \bold{172}, 137--59
#'
#' Hunter JE & Schmidt FL (2015):
#' \emph{Methods of Meta-Analysis: Correcting Error and Bias in
#' Research Findings} (Third edition).
#' Thousand Oaks, CA: Sage
#'
#' IntHout J, Ioannidis JPA, Borm GF (2014):
#' The Hartung-Knapp-Sidik-Jonkman method for random effects
#' meta-analysis is straightforward and considerably outperforms the
#' standard DerSimonian-Laird method.
#' \emph{BMC Medical Research Methodology},
#' \bold{14}, 25
#'
#' IQWiG (2022):
#' General Methods: Version 6.1.
#' \url{https://www.iqwig.de/en/about-us/methods/methods-paper/}
#'
#' Jackson D (2013):
#' Confidence intervals for the between-study variance in random
#' effects meta-analysis using generalised Cochran heterogeneity
#' statistics.
#' \emph{Research Synthesis Methods},
#' \bold{4}, 220--229
#'
#' Jackson D, Law M, Rücker G, Schwarzer G (2017):
#' The Hartung-Knapp modification for random-effects meta-analysis: A
#' useful refinement but are there any residual concerns?
#' \emph{Statistics in Medicine},
#' \bold{36}, 3923--34
#'
#' Knapp G & Hartung J (2003):
#' Improved tests for a random effects meta-regression with a single
#' covariate.
#' \emph{Statistics in Medicine},
#' \bold{22}, 2693--710
#'
#' Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA,
#' Kontopantelis E, et al. (2019):
#' A comparison of heterogeneity variance estimators in simulated
#' random-effects meta-analyses.
#' \emph{Research Synthesis Methods},
#' \bold{10}, 83--98
#'
#' Schwarzer G (2007):
#' meta: An R package for meta-analysis.
#' \emph{R News},
#' \bold{7}, 40--5
#'
#' Schwarzer G, Carpenter JR and Rücker G (2015):
#' \emph{Meta-Analysis with R (Use-R!)}.
#' Springer International Publishing, Switzerland
#'
#' Skipka G (2006):
#' The inclusion of the estimated inter-study variation into forest
#' plots for random effects meta-analysis - a suggestion for a
#' graphical representation [abstract].
#' \emph{XIV Cochrane Colloquium, Dublin}, 23-26.
#'
#' Stijnen T, Hamza TH, Ozdemir P (2010):
#' Random effects meta-analysis of event outcome in the framework of
#' the generalized linear mixed model with applications in sparse
#' data.
#' \emph{Statistics in Medicine},
#' \bold{29}, 3046--67
#'
#' Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G,
#' et al. (2016):
#' Methods to estimate the between-study variance and its uncertainty
#' in meta-analysis.
#' \emph{Research Synthesis Methods},
#' \bold{7}, 55--79
#'
#' Veroniki AA, Jackson D, Bender R, Kuss O, Higgins JPT, Knapp G, Salanti G
#' (2019):
#' Methods to calculate uncertainty in the estimated overall effect size from a
#' random-effects meta-analysis.
#' \emph{Research Synthesis Methods},
#' \bold{10}, 23--43
#'
#' Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J (2013):
#' Three-level meta-analysis of dependent effect sizes.
#' \emph{Behavior Research Methods},
#' \bold{45}, 576--94
#'
#' Viechtbauer W (2005):
#' Bias and efficiency of meta-analytic variance estimators in the
#' random-effects model.
#' \emph{Journal of Educational and Behavioral Statistics},
#' \bold{30}, 261--93
#'
#' Viechtbauer W (2007):
#' Confidence intervals for the amount of heterogeneity in
#' meta-analysis.
#' \emph{Statistics in Medicine},
#' \bold{26}, 37--52
#'
#' Viechtbauer W (2010):
#' Conducting Meta-Analyses in R with the metafor Package.
#' \emph{Journal of Statistical Software},
#' \bold{36}, 1--48
#'
#' Wiksten A, Rücker G, Schwarzer G (2016):
#' Hartung-Knapp method is not always conservative compared with
#' fixed-effect meta-analysis.
#' \emph{Statistics in Medicine},
#' \bold{35}, 2503--15
#'
#' @keywords package
#'
#' @seealso \code{\link{meta-object}}, \code{\link{meta-sm}}
#'
#' @import metadat
#'
#' @importFrom dplyr %>% across mutate all_of select rename mutate
#' if_else
#'
#' @importFrom stringr str_pad
#'
#' @importFrom magrittr %<>%
#'
#' @importFrom purrr compact
#'
#' @importFrom readr read_csv cols
#'
#' @importFrom grid arrow gpar grid.circle grid.draw grid.layout
#' grid.lines grid.newpage grid.polygon grid.rect grid.text
#' grid.xaxis textGrob popViewport pushViewport viewport unit unit.c
#' convertX
#' grid.get grid.gget
#'
#' @importFrom grDevices gray gray.colors cairo_pdf cairo_ps pdf
#' postscript svg bmp jpeg png tiff
#'
#' @importFrom graphics abline axis barplot box mtext lines par plot
#' points polygon text
#'
#' @importFrom stats as.formula binom.test coef cor lm pchisq pf pnorm
#' poisson.test pt qlogis qnorm qt runif update var weighted.mean
#' weights glm binomial vcov fitted residuals
#'
#' @importFrom utils count.fields read.table assignInNamespace
#' getFromNamespace packageDescription packageVersion head tail find
#' unzip
#'
#' @importFrom metafor forest funnel funnel.default baujat labbe
#' radial trimfill rma.uni rma.glmm rma.mv predict.rma
#' confint.rma.uni confint.rma.mv escalc regtest to.long vcalc blup
#'
#' @importFrom lme4 glmer
#'
#' @importFrom CompQuadForm farebrother
#'
#' @importFrom methods formalArgs
#'
#' @importFrom xml2 as_xml_document xml_attr xml_find_all xml_text
#'
#' @export forest funnel baujat labbe radial trimfill blup
"_PACKAGE"
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.