R/gamm.r

Defines functions test.gamm gamm new.name formXtViX extract.lme.cov extract.lme.cov2 varWeights.dfo gamm.setup smooth2random.tensor.smooth smooth2random.mgcv.smooth smooth2random.t2.smooth smooth2random.fs.interaction smooth2random summary.pdIdnot solve.pdIdnot logDet.pdIdnot Dim.pdIdnot coef.pdIdnot pdMatrix.pdIdnot pdFactor.pdIdnot pdConstruct.pdIdnot corMatrix.pdIdnot summary.pdTens coef.pdTens pdMatrix.pdTens pdFactor.pdTens pdConstruct.pdTens pdTens notLog2 notLog notExp

Documented in coef.pdIdnot coef.pdTens corMatrix.pdIdnot Dim.pdIdnot extract.lme.cov extract.lme.cov2 formXtViX gamm logDet.pdIdnot new.name notExp notLog notLog2 pdConstruct.pdIdnot pdConstruct.pdTens pdFactor.pdIdnot pdFactor.pdTens pdMatrix.pdIdnot pdMatrix.pdTens pdTens smooth2random solve.pdIdnot summary.pdIdnot summary.pdTens

##  R routines for mgcv::gamm (c) Simon Wood 2002-2019

### the following two functions are for use in place of log and exp
### in positivity ensuring re-parameterization.... they have `better' 
### over/underflow characteristics, but are still continuous to second
### derivative. 

notExp <- function(x)
# overflow avoiding C2 function for ensuring positivity
{ f <- x
  ind <- x > 1
  f[ind] <- exp(1)*(x[ind]^2+1)/2
  ind <- (x <= 1)&(x > -1)
  f[ind] <- exp(x[ind])
  ind <- (x <= -1)
  x[ind] <- -x[ind] ;f[ind] <-  exp(1)*(x[ind]^2+1)/2; f[ind]<-1/f[ind]
  f
}


notLog <- function(x)
# inverse function of notExp
{ f <- x
  ind <- x> exp(1)
  f[ind] <- sqrt(2*x[ind]/exp(1)-1)
  ind <- !ind & x > exp(-1)
  f[ind] <- log(x[ind])
  ind <- x <= exp(-1)
  x[ind]<- 1/x[ind]; f[ind] <- sqrt(2*x[ind]/exp(1)-1);f[ind] <- -f[ind]
 f
}

## notLog/notExp replacements. 
## around 27/7/05 nlme was modified to use a new optimizer, which fails with 
## indefinite Hessians. This is a problem if smoothing parameters are zero 
## or infinite. The following attempts to make the notLog parameterization 
## non-monotonic, to artificially reduce the likelihood at very large and very
## small parameter values.

## note gamm, pdTens, pdIdnot, notExp and notExp2 .Rd files all modified by
## this change.


notExp2 <- function (x,d=.Options$mgcv.vc.logrange,b=1/d)
## to avoid needing to modify solve.pdIdnot, this transformation must
## maintain the property that 1/notExp2(x) = notExp2(-x)
{ exp(d*sin(x*b))
}

notLog2 <- function(x,d=.Options$mgcv.vc.logrange,b=1/d)
{ x <- log(x)/d
  x <- pmin(1,x)
  x <- pmax(-1,x)
  asin(x)/b
}


#### pdMat class definitions, to enable tensor product smooths to be employed with gamm()
#### Based on various Pinheiro and Bates pdMat classes.

pdTens <- function(value = numeric(0), form = NULL, nam = NULL, data = sys.frame(sys.parent()))
## Constructor for the pdTens pdMat class: 
# the inverse of the scaled random effects covariance matrix for this class
# is given by a weighted sum of the matrices in the list that is the "S" attribute of 
# a pdTens formula. The weights are the exponentials of the class parameters.
# i.e. the inverse of the r.e. covariance matrix is 
#   \sum_i \exp(\theta_i) S_i / \sigma^2 
# The class name relates to the fact that these objects are used with tensor product smooths.  
{
  object <- numeric(0)
  class(object) <- c("pdTens", "pdMat")
  nlme::pdConstruct(object, value, form, nam, data)
}

## Methods for local generics


pdConstruct.pdTens <-
  function(object, value = numeric(0), form = formula(object),
	   nam = nlme::Names(object), data = sys.frame(sys.parent()), ...)
## used to initialize pdTens objects. Note that the initialization matrices supplied
## are (factors of) trial random effects covariance matrices or their inverses.
## Which one is being passed seems to have to be derived from looking at its
##  structure.
## Class tested rather thoroughly with nlme 3.1-52 on R 2.0.0
{
  val <- NextMethod()
  if (length(val) == 0) {               # uninitiliazed object
    class(val) <- c("pdTens","pdMat")
    return(val)
  }
  if (is.matrix(val)) {			# initialize from a positive definite
    S <- attr(form,"S")
    m <- length(S)
    ## codetools gets it wrong about `y'
    y <- as.numeric((crossprod(val)))   # it's a factor that gets returned in val
    lform <- "y ~ as.numeric(S[[1]])"
    if (m>1) for (i in 2:m) lform <- paste(lform," + as.numeric(S[[",i,"]])",sep="")
    lform <- formula(paste(lform,"-1"))
    mod1 <- lm(lform)
    mod1.r2 <- 1-sum(residuals(mod1)^2)/sum((y-mean(y))^2)
    y <- as.numeric(solve(crossprod(val))) ## ignore codetools complaint about this
    mod2 <- lm(lform)
    mod2.r2 <- 1-sum(residuals(mod2)^2)/sum((y-mean(y))^2)
    ## `value' and `val' can relate to the cov matrix or its inverse:
    ## the following seems to be only way to tell which.
    #if (summary(mod2)$r.sq>summary(mod1)$r.sq) mod1<-mod2
    if (mod2.r2 > mod1.r2) mod1 <- mod2
    value <- coef(mod1)  
    value[value <=0] <- .Machine$double.eps * mean(as.numeric(lapply(S,function(x) max(abs(x)))))
    value <- notLog2(value)
    attributes(value) <- attributes(val)[names(attributes(val)) != "dim"]
    class(value) <- c("pdTens", "pdMat")
    return(value)
  }
  m <- length(attr(form,"S"))
  if ((aux <- length(val)) > 0) {
    if (aux && (aux != m)) {
      stop(gettextf("An object of length %d does not match the required parameter size",aux))
    }
  }
  class(val) <- c("pdTens","pdMat")
  val
}


pdFactor.pdTens <- function(object)
## The factor of the inverse of the scaled r.e. covariance matrix is returned here
## it should be returned as a vector. 
{ sp <- as.vector(object)
  m <- length(sp)
  S <- attr(formula(object),"S")
  value <- S[[1]]*notExp2(sp[1])
  if (m>1) for (i in 2:m) value <- value + notExp2(sp[i])*S[[i]] 
  if (sum(is.na(value))>0) warning("NA's in pdTens factor")
  value <- (value+t(value))/2
  c(t(mroot(value,rank=nrow(value))))
}


pdMatrix.pdTens <-
  function(object, factor = FALSE) 
# the inverse of the scaled random effect covariance matrix is returned here, or
# its factor if factor==TRUE. If A is the matrix being factored and B its
# factor, it is required that A=B'B (not the mroot() default!)

{
  if (!nlme::isInitialized(object)) {
    stop("Cannot extract the matrix from an uninitialized object")
  }
  sp <- as.vector(object)
  m <- length(sp)
  S <- attr(formula(object),"S")
  value <- S[[1]]*notExp2(sp[1])   
  if (m>1) for (i in 2:m) value <- value + notExp2(sp[i])*S[[i]]  
 
  value <- (value + t(value))/2 # ensure symmetry
  if (sum(is.na(value))>0) warning("NA's in pdTens matrix")
  if (factor) {
    value <- t(mroot(value,rank=nrow(value)))
  } 
  dimnames(value) <- attr(object, "Dimnames")
  value
}

#### Methods for standard generics

coef.pdTens <-
  function(object, unconstrained = TRUE, ...)
{
  if (unconstrained) NextMethod()
  else {
    val <- notExp2(as.vector(object))
    names(val) <- paste("sp.",1:length(val), sep ="")
    val
  }
}

summary.pdTens <-
  function(object, structName = "Tensor product smooth term", ...)
{
  NextMethod(object, structName, noCorrelation=TRUE)
}


# .... end of pdMat definitions for tensor product smooths


### pdIdnot: multiple of the identity matrix - the parameter is
### the notLog2 of the multiple. This is directly modified form 
### Pinheiro and Bates pdIdent class.

####* Constructor

pdIdnot <-
  ## Constructor for the pdIdnot class
  function(value = numeric(0), form = NULL, nam = NULL, data = sys.frame(sys.parent()))
{ #cat(" pdIdnot  ")
  object <- numeric(0)
  class(object) <- c("pdIdnot", "pdMat")
  nlme::pdConstruct(object, value, form, nam, data)
}

####* Methods for local generics

corMatrix.pdIdnot <-
  function(object, ...)
{
  if (!nlme::isInitialized(object)) {
    stop("Cannot extract the matrix from an uninitialized pdMat object")
  }
  if (is.null(Ncol <- attr(object, "ncol"))) {
    stop(paste("Cannot extract the matrix with uninitialized dimensions"))
  }
  val <- diag(Ncol)
## REMOVE sqrt() to revert ...
  attr(val, "stdDev") <- rep(sqrt(notExp2(as.vector(object))), Ncol)
  if (length(nm <- nlme::Names(object)) == 0) {
    len <- length(as.vector(object)) 
    nm <- paste("V", 1:len, sep = "")
    dimnames(val) <- list(nm, nm)
  }
  names(attr(val, "stdDev")) <- nm
  val
}

pdConstruct.pdIdnot <-
  function(object, value = numeric(0), form = formula(object),
	   nam = nlme::Names(object), data = sys.frame(sys.parent()), ...)
{ #cat(" pdConstruct.pdIdnot  ")
  val <- NextMethod()
  if (length(val) == 0) {			# uninitialized object
    if ((ncol <- length(nlme::Names(val))) > 0) {
      attr(val, "ncol") <- ncol
    }
    return(val)
  }
  if (is.matrix(val)) {
#    value <- notLog2(sqrt(mean(diag(crossprod(val)))))
    value <- notLog2(mean(diag(crossprod(val)))) ## REPLACE by above to revert
    attributes(value) <- attributes(val)[names(attributes(val)) != "dim"]
    attr(value, "ncol") <- dim(val)[2]
    class(value) <- c("pdIdnot", "pdMat")
    return(value)
  }
  if (length(val) > 1) {
    stop(paste("An object of length", length(val),
	       "does not match the required parameter size"))
  }
  if (((aux <- length(nlme::Names(val))) == 0) && is.null(formula(val))) {
    stop(paste("Must give names when initializing pdIdnot from parameter.",
	       "without a formula"))
  } else {
    attr(val, "ncol") <- aux
  }
  val
}

pdFactor.pdIdnot <-
  function(object)
{ ## UNCOMMENT first line, comment 2nd to revert
  # notExp2(as.vector(object)) * diag(attr(object, "ncol"))
  #cat(" pdFactor.pdIdnot  ")
  sqrt(notExp2(as.vector(object))) * diag(attr(object, "ncol"))
}

pdMatrix.pdIdnot <-
  function(object, factor = FALSE)
{ #cat("  pdMatrix.pdIdnot  ")
  if (!nlme::isInitialized(object)) {
    stop("Cannot extract the matrix from an uninitialized pdMat object")
  }
  if (is.null(Ncol <- attr(object, "ncol"))) {
    stop(paste("Cannot extract the matrix with uninitialized dimensions"))
  }
  value <- diag(Ncol)
    
  ## REPLACE by #1,#2,#3 to revert
  if (factor) {
   #1  value <- notExp2(as.vector(object)) * value
   #2  attr(value, "logDet") <- Ncol * log(notExp2(as.vector(object)))
   value <- sqrt(notExp2(as.vector(object))) * value
   attr(value, "logDet") <- Ncol * log(notExp2(as.vector(object)))/2
  } else {
   #3 value <- notExp2(as.vector(object))^2 * value
    value <- notExp2(as.vector(object)) * value
  }
  dimnames(value) <- attr(object, "Dimnames")
  value
}

####* Methods for standard generics

coef.pdIdnot <-
  function(object, unconstrained = TRUE, ...)
{ #cat(" coef.pdIdnot    ")
  if (unconstrained) NextMethod()
  else structure(notExp2(as.vector(object)),
           names = c(paste("sd(", deparse(formula(object)[[2]],backtick=TRUE),")",sep = "")))
}

Dim.pdIdnot <-
  function(object, ...)
{
  if (!is.null(val <- attr(object, "ncol"))) {
    c(val, val)
  } else {
    stop("Cannot extract the dimensions")
  }
}

logDet.pdIdnot <-
  function(object, ...)
{ ## REMOVE /2 to revert ....
  attr(object, "ncol") * log(notExp2(as.vector(object)))/2
  
}

solve.pdIdnot <-
  function(a, b, ...)
{
  if (!nlme::isInitialized(a)) {
    stop("Cannot extract the inverse from an uninitialized object")
  }
  atr <- attributes(a)
  a <- -coef(a, TRUE)
  attributes(a) <- atr
  a
}

summary.pdIdnot <-
  function(object, structName = "Multiple of an Identity", ...)
{ #cat("  summary.pdIdnot  ")
  # summary.pdMat(object, structName, noCorrelation = TRUE)

  ## ... summary.pdMat is not exported in the nlme NAMESPACE file, so....

  NextMethod(object, structName, noCorrelation=TRUE)
}

### end of pdIdnot class

smooth2random <- function(object,vnames,type=1) UseMethod("smooth2random")

smooth2random.fs.interaction <- function(object,vnames,type=1) {
## conversion method for smooth-factor random interactions.
## For use with gamm4, this needs to generate a sparse version of
## each full model matrix, with smooth coefs re-ordered so that the 
## penalties are not interwoven, but blocked (i.e. this ordering is 
## as for gamm case). 
  if (object$fixed) return(list(fixed=TRUE,Xf=object$X))
  ## If smooth constructor was not called with "gamm" attribute set,
  ## then we need to reset model matrix to base model matrix.
  if (!is.null(object$Xb)) {
    object$X <- object$Xb
    object$S <- object$base$S
    if (!is.null(object$S.scale)&&length(object$S)>0) for (i in 1:length(object$S)) object$S[[i]] <- object$S[[i]]/object$S.scale[i] 
  }  
  colx <- ncol(object$X) 
  diagU <- rep(1,colx)
  ind <- 1:colx 
  ## flev <- levels(object$fac)
  n.lev <- length(object$flev)
  if (type==2) {
    ## index which params in fit parameterization are penalized by each penalty.
    ## e.g. pen.ind==1 is TRUE for each param penalized by first penalty and
    ## FALSE otherwise...
    pen.ind <- rep(ind*0,n.lev)
  } else pen.ind <- NULL
  random <- list()
  k <- 1
  rinc <- rind <- rep(0,0)
  for (i in 1:length(object$S)) { ## work through penalties
    indi <- ind[diag(object$S[[i]])!=0] ## index of penalized cols
   
    X <- object$X[,indi,drop=FALSE] ## model matrix for this component
    D <- diag(object$S[[i]])[indi]
    diagU[indi] <- 1/sqrt(D) ## transform that reduces penalty to identity
    X <- X%*%diag(diagU[indi],ncol=length(indi))
    term.name <- new.name("Xr",vnames)
    vnames <- c(vnames,term.name)
    rind <- c(rind,k:(k+ncol(X)-1))
    rinc <- c(rinc,rep(ncol(X),ncol(X)))
    k <- k + n.lev * ncol(X)
    if (type==1) { ## gamm form for use with lme 
      ## env set to avoid 'save' saving whole environment to file...
      form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
      fname <- new.name(object$fterm,vnames)
      vnames <- c(vnames,fname)
      random[[i]] <- pdIdnot(form)
      names(random)[i] <- fname        ## supplied factor name
      attr(random[[i]],"group") <- object$fac  ## factor supplied as part of term 
      attr(random[[i]],"Xr.name") <- term.name
      attr(random[[i]],"Xr") <- X
    } else { ## gamm4 form --- whole sparse matrices
      ## Xr <- as(matrix(0,nrow(X),0),"dgCMatrix") - deprecated, use...
      Xr <- as(as(as(matrix(0,nrow(X),0), "dMatrix"), "generalMatrix"), "CsparseMatrix")
      ii <- 0
      for (j in 1:n.lev) { ## assemble full sparse model matrix
        ## Xr <- cbind2(Xr,as(X*as.numeric(object$fac==object$flev[j]),"dgCMatrix")) - deprecated
	Xr <- cbind2(Xr,
	  as(as(as(X*as.numeric(object$fac==object$flev[j]), "dMatrix"), "generalMatrix"), "CsparseMatrix"))
        pen.ind[indi+ii] <- i;ii <- ii + colx
      }
      random[[i]] <- if (is.null(object$Xb)) Xr else as(Xr,"matrix") 
      names(random)[i] <- term.name
      attr(random[[i]],"s.label") <- object$label
    }
  }
  if (type==2) {
    ## expand the rind (rinc not needed)
    ind <- 1:length(rind)
    ni <- length(ind)
    rind <- rep(rind,n.lev)
    if (n.lev>1) for (k in 2:n.lev) { 
      rind[ind+ni] <- rind[ind]+rinc
      ind <- ind + ni
    }
    D <- rep(diagU,n.lev)
  } else D <- diagU ## b_original = D*b_fit

  Xf <- matrix(0,nrow(object$X),0)
  list(rand=random,trans.D=D,Xf=Xf,fixed=FALSE,rind=rind,rinc=rinc,
       pen.ind=pen.ind) ## pen.ind==i is TRUE for coefs penalized by ith penalty
} ## smooth2random.fs.interaction

smooth2random.t2.smooth <- function(object,vnames,type=1) {
## takes a smooth object and turns it into a form suitable for estimation as a random effect
## vnames is a list of names to avoid when assigning variable names.
## type==1 indicates an lme random effect.
## Returns 1. a list of random effects, including grouping factors, and 
##            a fixed effects matrix. Grouping factors, model matrix and 
##            model matrix name attached as attributes, to each element. 
##         2. rind: and index vector such that if br is the vector of 
##            random coefficients for the term, br[rind] is the coefs in 
##            order for this term. rinc - dummy here.
##         3. A matrix, trans.D, that transforms coefs, in order [rand1, rand2,... fix]
##            back to original parameterization. If null, then not needed.
##         4. A matrix Xf for the fixed effects, if any.
##         5. fixed TRUE/FALSE if its fixed or not. If fixed the other stuff is
##            not returned.
## This version deals only with t2 smooths conditioned on a whole 
## dataset dummy factor.
## object must contain model matrix for smooth.
  if (object$fixed) return(list(fixed=TRUE,Xf=object$X))

  fixed <- rep(TRUE,ncol(object$X))
  random <- list()
  diagU <- rep(1,ncol(object$X))
  ind <- 1:ncol(object$X)
  pen.ind <- ind*0
  n.para <- 0
  for (i in 1:length(object$S)) { ## work through penalties
    indi <- ind[diag(object$S[[i]])!=0] ## index of penalized cols
    pen.ind[indi] <- i
    X <- object$X[,indi,drop=FALSE] ## model matrix for this component
    D <- diag(object$S[[i]])[indi]
    diagU[indi] <- 1/sqrt(D) ## transform that reduces penalty to identity
    X <- X%*%diag(diagU[indi])
    fixed[indi] <- FALSE
    term.name <- new.name("Xr",vnames)
    group.name <- new.name("g",vnames)
    vnames <- c(vnames,term.name,group.name)
    if (type==1) { ## gamm form for lme
      ## env set to avoid 'save' saving whole environment to file...
      form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
      random[[i]] <- pdIdnot(form)
      names(random)[i] <- group.name
      attr(random[[i]],"group") <- factor(rep(1,nrow(X)))
      attr(random[[i]],"Xr.name") <- term.name
      attr(random[[i]],"Xr") <- X  
    } else { ## lmer form as used by gamm4
      random[[i]] <- X 
      names(random)[i] <- term.name
      attr(random[[i]],"s.label") <- object$label
    }
    n.para <- n.para + ncol(X)
  }
  if (sum(fixed)) { ## then there are fixed effects!
    Xf <- object$X[,fixed,drop=FALSE]
  } else Xf <- matrix(0,nrow(object$X),0)
  list(rand=random,trans.D=diagU,Xf=Xf,fixed=FALSE,
       rind=1:n.para,rinc=rep(n.para,n.para),pen.ind=pen.ind)
} ## smooth2random.t2.smooth

smooth2random.mgcv.smooth <- function(object,vnames,type=1) {
## takes a smooth object and turns it into a form suitable for estimation as a random effect
## vnames is a list of names to avoid when assigning variable names.
## type==1 indicates an lme random effect.
## Returns 1. a list of random effects, including grouping factors, and 
##            a fixed effects matrix. Grouping factors, model matrix and 
##            model matrix name attached as attributes, to each element. 
##         2. rind: an index vector such that if br is the vector of 
##            random coefficients for the term, br[rind] is the coefs in 
##            order for this term. rinc - dummy here.
##         3. A matrix, U, + vec D that transforms coefs, in order [rand1, rand2,... fix]
##            back to original parameterization. b_origonal = U%*%(D*b_fit) 
##         4. A matrix Xf for the fixed effects, if any.
##         5. fixed TRUE/FALSE if its fixed or not. If fixed the other stuff is
##            not returned.
## This version deals only with single penalty smooths conditioned on a whole 
## dataset dummy factor.
## object must contain model matrix for smooth.
  if (object$fixed) return(list(fixed=TRUE,Xf=object$X))

  if (length(object$S)>1) stop("Can not convert this smooth class to a random effect")

  ## reparameterize so that unpenalized basis is separated out and at end...
  ev <- eigen(object$S[[1]],symmetric=TRUE)
  ## following is a hack for developers calling smooth2random for fit and then again
  ## for prediction, rather than as intended (do this on different machines and...)
  if (ev$vectors[1,1]<0) ev$vectors <- -ev$vectors 
  null.rank <- object$df - object$rank
  p.rank <- object$rank
  if (p.rank>ncol(object$X)) p.rank <- ncol(object$X)
  U <- ev$vectors
  D <- c(ev$values[1:p.rank],rep(1,null.rank))
  D <- 1/sqrt(D)
  UD <- t(t(U)*D)      ## U%*%[b,beta] returns coefs in original parameterization 
  X <- object$X%*%UD 
  if (p.rank<object$df) Xf <- X[,(p.rank+1):object$df,drop=FALSE] else 
                        Xf <- matrix(0,nrow(object$X),0) # no fixed terms left
  
  term.name <- new.name("Xr",vnames)
  if (type==1) { ## gamm form for lme
    ## env set to avoid 'save' saving whole environment with fitted model object
    form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
    random <- list(pdIdnot(form))
    group.name <- new.name("g",vnames)
    names(random) <- group.name
    attr(random[[1]],"group") <- factor(rep(1,nrow(X)))
    attr(random[[1]],"Xr.name") <- term.name
    attr(random[[1]],"Xr") <- X[,1:p.rank,drop=FALSE]
  } else { ## lmer form as used in gamm4
    random <- list(X[,1:p.rank,drop=FALSE]) 
    names(random)[1] <- term.name
    attr(random[[1]],"s.label") <- object$label
  }
  rind <- 1:p.rank
  pen.ind <- rep(0,ncol(object$X))
  pen.ind[rind] <- 1
  rinc <- rep(p.rank,p.rank)
  list(rand=random, ## the random effects for this term
         Xf=Xf, ## the fixed effect model matrix for this term
         trans.U=U,   ## orthog matrix mapping coefs back to original parameterization 
         trans.D=D,   ## back trans vector (b_original = U%*%(D*b_fit))
         fixed=FALSE,rind=rind,rinc=rinc,
         pen.ind=pen.ind)
} ## end smooth2random.mgcv.smooth


smooth2random.tensor.smooth <- function(object,vnames,type=1) {
## takes a smooth object and turns it into a form suitable for estimation as a random effect
## vnames is a list of names to avoid when assigning variable names.
## type==1 indicates an lme random effect.
## Returns 1. a list of random effects, including grouping factors, and 
##            a fixed effects matrix. Grouping factors, model matrix and 
##            model matrix name attached as attributes, to each element. 
##         2. rind: an index vector such that if br is the vector of 
##            random coefficients for the term, br[rind] is the coefs in 
##            order for this term. rinc - dummy here.
##         3. A matrix, U, that transforms coefs, in order [rand1, rand2,... fix]
##            back to original parameterization. If null, then not needed.
##         4. A matrix Xf for the fixed effects, if any.
##         5. fixed TRUE/FALSE if its fixed or not. If fixed the other stuff is
##            not returned.
## This version deals only with te smooths conditioned on a whole 
## dataset dummy factor.
## object must contain model matrix for smooth.

  if (type==2) stop("te smooths not useable with gamm4: use t2 instead")

  if (sum(object$fx)==length(object$fx)) return(list(fixed=TRUE,Xf=object$X)) else
  if (sum(object$fx)!=0) warning("gamm can not fix only some margins of tensor product.")
     
  ## first sort out the re-parameterization...
  sum.S <- object$S[[1]]/mean(abs(object$S[[1]]))
  #null.rank <- ncol(object$margin[[1]]$X)-object$margin[[1]]$rank ## null space rank
  # bs.dim <- ncol(object$margin[[1]]$X)
  if (length(object$S)>1) for (l in 2:length(object$S)) { 
    sum.S <- sum.S + object$S[[l]]/mean(abs(object$S[[l]]))
    #dfl <- ncol(object$margin[[l]]$X) ## actual df of term (`df' may not be set by constructor)
    #null.rank <- null.rank * (dfl-object$margin[[l]]$rank) 
    #bs.dim <- bs.dim * dfl
  }
  null.rank <- object$null.space.dim
  #null.rank <- null.rank - bs.dim + object$df
  ##sum.S <- (sum.S+t(sum.S))/2 # ensure symmetry
  ev <- eigen(sum.S,symmetric=TRUE)
  ## following is a hack for developers calling smooth2random for fit and then again
  ## for prediction, rather than as intended...
  if (ev$vectors[1,1]<0) ev$vectors <- -ev$vectors 
  p.rank <- ncol(object$X) - null.rank
  if (p.rank>ncol(object$X)) p.rank <- ncol(object$X)
  U <- ev$vectors
  D <- c(ev$values[1:p.rank],rep(1,null.rank))
  if (sum(D<=0)) stop(
  "Tensor product penalty rank appears to be too low: please email Simon.Wood@R-project.org with details.")
  ## D <- 1/sqrt(D)
  U <- U ## maps coefs back to untransformed versions
  X <- object$X%*%U
  if (p.rank<ncol(X)) Xf <- X[,(p.rank+1):ncol(X),drop=FALSE] else 
                      Xf <- matrix(0,nrow(X),0) # no fixed terms left
 
  for (l in 1:length(object$S)) {   # transform penalty explicitly
    object$S[[l]] <- (t(U)%*%object$S[[l]]%*%U)[1:p.rank,1:p.rank]
    object$S[[l]] <- (object$S[[l]]+t(object$S[[l]]))/2
  }
  
  term.name <- new.name("Xr",vnames)
  form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
  attr(form,"S") <- object$S   ## this class needs penalty matrices to be supplied
  random <- list(pdTens(form)) ## lme random effect class

  group.name <- new.name("g",vnames)
  names(random) <- group.name ## grouping factor name
  attr(random[[1]],"group") <- factor(rep(1,nrow(X))) ## grouping factor
  attr(random[[1]],"Xr.name") <- term.name           ## random effect matrix name 
  attr(random[[1]],"Xr") <- X[,1:p.rank,drop=FALSE] ## random effect model matrix
  rind <- 1:p.rank
  rinc <- rep(p.rank,p.rank)
  list(rand=random, ## the random effects for this term
         Xf=Xf, ## the fixed effect model matrix for this term
         trans.U=U,   ## the matrix mapping coefs back to original parameterization   
         trans.D=rep(1,ncol(U)),
         fixed=FALSE,rind=rind,rinc=rinc)
} ## end smooth2random.tensor.smooth



gamm.setup <- function(formula,pterms,
                      data=stop("No data supplied to gamm.setup"),knots=NULL,
                     parametric.only=FALSE,absorb.cons=FALSE)
## set up the model matrix, penalty matrices and auxilliary information about the smoothing bases
## needed for a gamm fit.
## NOTE: lme can't deal with offset terms.
## There is an implicit assumption that any rank deficient penalty does not penalize 
## the constant term in a basis. 
## 1. Calls gam.setup, as for a gam to produce object G suitable for estimating a gam.
## 2. Works through smooth list, G$smooth, modifying so that... 
##    i) Smooths are reparameterized to have identity, or tensor, penalty matrices,
##       and separated fixed and random components with transform information 
##       stored in the smooth.
##   ii) The smooth stores the index range of its coefficients in overall
##       fixed and r.e. coef vectors.
##   iii) pdIdnot or pdTens terms are stored in a separate `G$random' list, which
##        refers, by name, to r.e. model matrices stored directly in G.
##   iv) an overall fixed effect matrix X is accumulated.   
{ 
  ## first simply call `gam.setup'....

  G <- gam.setup(formula,pterms,
                 data=data,knots=knots,sp=NULL,
                 min.sp=NULL,H=NULL,absorb.cons=TRUE,sparse.cons=0,gamm.call=TRUE)
 
  if (!is.null(G$L)) stop("gamm can not handle linked smoothing parameters (probably from use of `id' or adaptive smooths)")
  # now perform re-parameterization...

  first.f.para <- G$nsdf+1 
  first.r.para <- 1
 
  G$Xf <- G$X # full GAM model matrix, treating smooths as fixed effects
  random <- list()
  
  if (G$nsdf>0) ind <- 1:G$nsdf else ind <- rep(0,0)  
  X <- G$X[,ind,drop=FALSE] # accumulate fixed effects into here

  xlab <- rep("",0)
  
  ## first have to create a processing order, so that any smooths conditional on 
  ## multi-level factors are processed last, and hence end up at the end of the 
  ## random list (right is nested in left in this list!)
  if (G$m>0) {
    pord <- 1:G$m
    done <- rep(FALSE,length(pord))
    k <- 0
    f.name <- NULL
    for (i in 1:G$m) if (is.null(G$smooth[[i]]$fac)) { 
         k <- k + 1
         pord[k] <- i 
         done[i] <- TRUE
    } else {
      if (is.null(f.name)) f.name <- G$smooth[[i]]$fterm
      else if (f.name!=G$smooth[[i]]$fterm) stop("only one level of smooth nesting is supported by gamm")
      if (!is.null(attr(G$smooth[[i]],"del.index"))) stop("side conditions not allowed for nested smooths")
    }   
    if (k < G$m) pord[(k+1):G$m] <- (1:G$m)[!done] 
    ## .... ordered so that nested smooths are last
  }

  if (G$m) for (i in 1:G$m) { ## work through the smooths
    
    sm <- G$smooth[[pord[i]]]
    sm$X <- G$X[,sm$first.para:sm$last.para,drop=FALSE]
    rasm <- smooth2random(sm,names(data)) ## convert smooth to random effect and fixed effects
    sm$fixed <- rasm$fixed
  
    if (!is.null(sm$fac)) { 
      flev <- levels(sm$fac) ## grouping factor for smooth
      ##n.lev <- length(flev)
    } ##else n.lev <- 1
 
    ## now append constructed variables to model frame and random effects to main list
    n.para <- 0 ## count random coefficients
   ## rinc <- rind <- rep(0,0)
    if (!sm$fixed) {
     # kk <- 1;
      for (k in 1:length(rasm$rand)) {
         group.name <- names(rasm$rand)[k]
         group <- attr(rasm$rand[[k]],"group")
         Xr.name <- attr(rasm$rand[[k]],"Xr.name")
         Xr <- attr(rasm$rand[[k]],"Xr")
         attr(rasm$rand[[k]],"group") <- attr(rasm$rand[[k]],"Xr") <- 
         attr(rasm$rand[[k]],"Xr.name") <- NULL
     #    rind <- c(rind,kk:(kk+ncol(Xr)-1))
     #    rinc <- c(rinc,rep(ncol(Xr),ncol(Xr))) ## increment for rind
     #    kk <- kk + n.lev * ncol(Xr)
         n.para <- n.para + ncol(Xr)
         data[[group.name]] <- group
         data[[Xr.name]] <- Xr
      }
      random <- c(random,rasm$rand)
      sm$trans.U <- rasm$trans.U ## matrix mapping fit coefs back to original
      sm$trans.D <- rasm$trans.D ## so b_original = U%*%(D*b_fit)
    }

    if (ncol(rasm$Xf)) { ## lme requires names
      Xfnames <- rep("",ncol(rasm$Xf)) 
      k <- length(xlab)+1
      for (j in 1:ncol(rasm$Xf)) {
        xlab[k] <- Xfnames[j] <-
        new.name(paste(sm$label,"Fx",j,sep=""),xlab)
        k <- k + 1
      } 
      colnames(rasm$Xf) <- Xfnames
    }

    X <- cbind(X,rasm$Xf) # add fixed model matrix to overall fixed X

    ## update the counters indicating which elements of the whole model 
    ## fixed and random coef vectors contain the coefs for this smooth.
    ## note convention that smooth coefs are [random, fixed]    

    sm$first.f.para <- first.f.para
    first.f.para <- first.f.para + ncol(rasm$Xf)
    sm$last.f.para <- first.f.para - 1 ## note less than sm$first.f.para => no fixed

    sm$rind <- rasm$rind - 1 + first.r.para
    sm$rinc <- rasm$rinc 
 #   sm$first.r.para <- first.r.para
    first.r.para <- first.r.para+n.para
 #   sm$last.r.para <- first.r.para-1

    sm$n.para <- n.para

    ## convention is that random coefs for grouped smooths will be 
    ## packed [coefs for level 1, coefs for level 2, ...]
    ## n.para is number of random paras at each level.
    ## so coefs for ith level will be indexed by 
    ## rind + (i-1)*n.para
    ## first.r.para:last.r.para + (i-1)*n.para

    if (!is.null(sm$fac)) { ## there is a grouping factor for this smooth
      ## have to up this first.r.para to allow a copy of coefs for each level of fac...
      first.r.para <- first.r.para + n.para*(length(flev)-1) 
    }   
 
    sm$X <- NULL ## delete model matrix
  
    if (G$m>0) G$smooth[[pord[i]]] <- sm  ## replace smooth object with extended version 
  }
 
  G$random <- random
  G$X <- X  ## fixed effects model matrix
  G$data <- data
  if (G$m>0) G$pord <- pord ## gamm needs to run through smooths in same order as here

  G
} ## end of gamm.setup



varWeights.dfo <- function(b,data)
## get reciprocal *standard deviations* implied by the estimated variance
## structure of an lme object, b, in *original data frame order*.
{  w <- nlme::varWeights(b$modelStruct$varStruct) 
   # w is not in data.frame order - it's in inner grouping level order
   group.name <- names(b$groups) # b$groups[[i]] doesn't always retain factor ordering
   ind <- NULL
   order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="")
   if (length(b$groups)>1) for (i in 2:length(b$groups)) 
   order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="")
   order.txt <- paste(order.txt,")")
   eval(parse(text=order.txt))
   w[ind] <- w # into data frame order
   w
}

extract.lme.cov2<-function(b,data=NULL,start.level=1)
# function to extract the response data covariance matrix from an lme fitted
# model object b, fitted to the data in data. "inner" == "finest" grouping 
# start.level is the r.e. grouping level at which to start the construction, 
# levels outer to this will not be included in the calculation - this is useful
# for gamm calculations
# 
# This version aims to be efficient, by not forming the complete matrix if it
# is diagonal or block diagonal. To this end the matrix is returned in a form
# that relates to the data re-ordered according to the coarsest applicable 
# grouping factor. ind[i] gives the row in the original data frame
# corresponding to the ith row/column of V. 
# V is either returned as an array, if it's diagonal, a matrix if it is
# a full matrix or a list of matrices if it is block diagonal.
{ if (!inherits(b,"lme")) stop("object does not appear to be of class lme")
  if (is.null(data)) {
    na.act <- na.action(b)
    data <- if (is.null(na.act)) b$data else b$data[-na.act,] 
  }
  grps <- nlme::getGroups(b) # labels of the innermost groupings - in data frame order
  n <- length(grps)    # number of data
  n.levels <- length(b$groups) # number of nested grouping factors (random effects only)
#  if (n.levels<start.level) { ## then examine correlation groups
    n.corlevels <- if (is.null(b$modelStruct$corStruct)) 0 else
                   length(all.vars(nlme::getGroupsFormula(b$modelStruct$corStruct)))
#  } else n.corlevels <- 0 ## used only to signal irrelevance
  ## so at this stage n.corlevels > 0 iff it determines the coarsest grouping
  ## level if > start.level. 
  if (n.levels<n.corlevels) { ## then cor groups are finest
    ## correlation groups are awkward. The groups returned by 
    ## getGroups(b$modelStruct$corStruct) are not in data frame 
    ## order, but in a sorted order. This is odd because if you
    ## take the original uninitialized corStruct and Initialize 
    ## using what is stored in b$data, and then apply getGroups,
    ## the groups are in data frame order (suggesting one route
    ## for getting the groups into data frame order). The approach
    ## taken here simply re-constructs the groups in data frame
    ## order, thereby avoiding the need to store the uninitialized 
    ## corStruct. Note that covariates of corStructs do not 
    ## cause re-ordering: only grouping variables do that. 
    ## The above has been tested at nlme_3.1-109
    ## grps <- nlme::getGroups(b$modelStruct$corStruct) # replace grps (but not n.levels)
    getGroupsFormula(b$modelStruct$corStruct)
    vnames <- all.vars(nlme::getGroupsFormula(b$modelStruct$corStruct))
    ## attr(b$modelStruct$corStruct,"formula") # would include covariates
    lab <- paste(eval(parse(text=vnames[1]),envir=b$data))
    if (length(vnames)>1) for (i in 2:length(vnames)) {
      lab <- paste(lab,"/",eval(parse(text=vnames[i]),envir=b$data),sep="")
    }
    grps <- factor(lab)
  }
  if (n.levels >= start.level||n.corlevels >= start.level) {
    if (n.levels >= start.level)
    Cgrps <- nlme::getGroups(b,level=start.level) # outer grouping labels (dforder) 
    else Cgrps <- grps
    #Cgrps <- nlme::getGroups(b$modelStruct$corStruct) # ditto
    Cind <- sort(as.numeric(Cgrps),index.return=TRUE)$ix
    # Cind[i] is where row i of sorted Cgrps is in original data frame order 
    rCind <- 1:n; rCind[Cind] <- 1:n
    # rCind[i] is location of ith original datum in the coarse ordering
    ## CFgrps <- grps[Cind] # fine group levels in coarse group order (unused!!)
    Clevel <- levels(Cgrps) # levels of coarse grouping factor
    n.cg <- length(Clevel)  # number of outer groups
    size.cg <- array(0,n.cg)  
    for (i in 1:n.cg) size.cg[i] <- sum(Cgrps==Clevel[i]) # size of each coarse group
    ## Cgrps[Cind] is sorted by coarsest grouping factor level
    ## so e.g. y[Cind] would be data in c.g.f. order
  } else { n.cg <- 1; Cind<-1:n }
  if (is.null(b$modelStruct$varStruct)) w<-rep(b$sigma,n) ### 
  else {
    w <- 1/nlme::varWeights(b$modelStruct$varStruct) 
    # w is not in data.frame order - it's in inner grouping level order
    group.name<-names(b$groups) # b$groups[[i]] doesn't always retain factor ordering
    order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="")
    if (length(b$groups)>1) for (i in 2:length(b$groups)) 
    order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="")
    order.txt <- paste(order.txt,")")
    eval(parse(text=order.txt))
    w[ind] <- w # into data frame order
    w <- w*b$sigma
  }
  w <- w[Cind] # re-order in coarse group order
  if (is.null(b$modelStruct$corStruct)) V <- array(1,n) 
  else {
    c.m <- nlme::corMatrix(b$modelStruct$corStruct) # correlation matrices for each innermost group
    if (!is.list(c.m)) { # copy and re-order into coarse group order
      V <- c.m;V[Cind,] -> V;V[,Cind] -> V 
    } else { 
      V<-list()   # V[[i]] is cor matrix for ith coarse group
      ind <- list() # ind[[i]] is order index for V[[i]] 
      for (i in 1:n.cg) { 
        V[[i]] <- matrix(0,size.cg[i],size.cg[i]) 
        ind[[i]] <- 1:size.cg[i]
      }
      # Voff[i] is where, in coarse order data, first element of V[[i]]
      # relates to ... 
      Voff <- cumsum(c(1,size.cg)) 
      gr.name <- names(c.m) # the names of the innermost groups
      n.g<-length(c.m)   # number of innermost groups
      j0<-rep(1,n.cg) # place holders in V[[i]]'s
      ii <- 1:n
      for (i in 1:n.g) # work through innermost groups
      { # first identify coarse grouping
        Clev <- unique(Cgrps[grps==gr.name[i]])  # level for coarse grouping factor
        if (length(Clev)>1) stop("inner groupings not nested in outer!!")
        k <- (1:n.cg)[Clevel==Clev] # index of coarse group - i.e. update V[[k]] 
        # now need to get c.m into right place within V[[k]]
        j1<-j0[k]+nrow(c.m[[i]])-1
        V[[k]][j0[k]:j1,j0[k]:j1]<-c.m[[i]]
        ind1 <- ii[grps==gr.name[i]] 
        # ind1 is the rows of original data.frame to which c.m[[i]] applies 
        # assuming that data frame order is preserved at the inner grouping
        ind2 <- rCind[ind1] 
        # ind2 contains the rows of the coarse ordering to which c.m[[i]] applies
        ind[[k]][j0[k]:j1] <- ind2 - Voff[k] + 1
        # ind[k] accumulates rows within coarse group k to which V[[k]] applies
        j0[k]<-j1+1  
      }
      for (k in 1:n.cg) { # pasting correlations into right place in each matrix
        V[[k]][ind[[k]],]<-V[[k]];V[[k]][,ind[[k]]]<-V[[k]] 
      }
    }
  } 
  # now form diag(w)%*%V%*%diag(w), depending on class of V
  if (is.list(V)) # it's  a block diagonal structure
  { for (i in 1:n.cg)
    { wi <- w[Voff[i]:(Voff[i]+size.cg[i]-1)] 
      V[[i]] <- as.vector(wi)*t(as.vector(wi)*V[[i]])
    }
  } else
  if (is.matrix(V))
  { V <- as.vector(w)*t(as.vector(w)*V)
  } else # it's a diagonal matrix
  { V <- w^2*V
  }
  # ... covariance matrix according to fitted correlation structure in coarse
  # group order
  
  ## Now work on the random effects ..... 
  X <- list()
  grp.dims <- b$dims$ncol # number of Zt columns for each grouping level (inner levels first)
  # inner levels are first in Zt
  Zt <- model.matrix(b$modelStruct$reStruct,data)  # a sort of proto - Z matrix
  # b$groups and cov (defined below have the inner levels last)
  cov <- as.matrix(b$modelStruct$reStruct) # list of estimated covariance matrices (inner level last)
  i.col<-1
  Z <- matrix(0,n,0) # Z matrix
  if (start.level<=n.levels)
  { for (i in 1:(n.levels-start.level+1)) # work through the r.e. groupings inner to outer
    { # get matrix with columns that are indicator variables for ith set of groups...
      # groups has outer levels first 
      if(length(levels(b$groups[[n.levels-i+1]]))==1) { ## model.matrix needs >1 level 
        X[[1]] <- matrix(rep(1,nrow(b$groups))) } else {
	clist <- list('b$groups[[n.levels - i + 1]]'=c("contr.treatment","contr.treatment"))
        X[[1]] <- model.matrix(~b$groups[[n.levels - i + 1]]-1,
                  contrasts.arg=clist) }
      # Get `model matrix' columns relevant to current grouping level...
      X[[2]] <- Zt[,i.col:(i.col+grp.dims[i]-1),drop=FALSE]
      i.col <- i.col+grp.dims[i]
      # tensor product the X[[1]] and X[[2]] rows...
      Z <- cbind(Z,tensor.prod.model.matrix(X))
    } # so Z assembled from inner to outer levels
    # Now construct overall ranef covariance matrix
    Vr <- matrix(0,ncol(Z),ncol(Z))
    start <- 1
    for (i in 1:(n.levels-start.level+1))
    { k <- n.levels-i+1
      for (j in 1:b$dims$ngrps[i]) 
      { stop <- start+ncol(cov[[k]])-1
        Vr[start:stop,start:stop]<-cov[[k]]
        start <- stop+1
      }
    }
    Vr <- Vr*b$sigma^2
    ## Now re-order Z into coarse group order
    Z <- Z[Cind,]
    ## Now Z %*% Vr %*% t(Z) is block diagonal: if Z' = [Z1':Z2':Z3': ... ]
    ## where Zi contains th rows of Z for the ith level of the coarsest
    ## grouping factor, then the ith block of (Z Vr Z') is (Zi Vr Zi')
    if (n.cg == 1) { 
      if (is.matrix(V)) { 
        V <- V+Z%*%Vr%*%t(Z)
      } else V <- diag(V) + Z%*%Vr%*%t(Z) 
    } else { # V has a block - diagonal structure
      j0 <- 1
      Vz <- list()
      for (i in 1:n.cg) {
        j1 <- size.cg[i] + j0 -1
        Zi <- Z[j0:j1,,drop=FALSE]
        Vz[[i]] <- Zi %*% Vr %*% t(Zi) 
        j0 <- j1+1
      }
      if (is.list(V)) {
        for (i in 1:n.cg) V[[i]] <- V[[i]]+Vz[[i]] 
      } else { 
        j0 <-1
        for (i in 1:n.cg) {
          kk <- size.cg[i]
          j1 <- kk + j0 -1
          Vz[[i]] <- Vz[[i]] + diag(x=V[j0:j1],nrow=kk,ncol=kk)
          j0 <- j1+1
        }
        V <- Vz
      }
    }
  }
  list(V=V,ind=Cind)
} ## extract.lme.cov2

extract.lme.cov<-function(b,data=NULL,start.level=1)
# function to extract the response data covariance matrix from an lme fitted
# model object b, fitted to the data in data. "inner" == "finest" grouping 
# start.level is the r.e. grouping level at which to start the construction, 
# levels outer to this will not be included in the calculation - this is useful
# for gamm calculations
{ if (!inherits(b,"lme")) stop("object does not appear to be of class lme")
  if (is.null(data)) {
    na.act <- na.action(b)
    data <- if (is.null(na.act)) b$data else b$data[-na.act,] 
  }
  grps<-nlme::getGroups(b) # labels of the innermost groupings - in data frame order
  n<-length(grps)    # number of data
  if (is.null(b$modelStruct$varStruct)) w<-rep(b$sigma,n) ### 
  else 
  { w<-1/nlme::varWeights(b$modelStruct$varStruct) 
    # w is not in data.frame order - it's in inner grouping level order
    group.name<-names(b$groups) # b$groups[[i]] doesn't always retain factor ordering
    order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="")
    if (length(b$groups)>1) for (i in 2:length(b$groups)) 
    order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="")
    order.txt <- paste(order.txt,")")
    eval(parse(text=order.txt))
    w[ind] <- w # into data frame order
    w<-w*b$sigma
  }
  if (is.null(b$modelStruct$corStruct)) V<-diag(n) #*b$sigma^2
  else
  { c.m<-nlme::corMatrix(b$modelStruct$corStruct) # correlation matrices for each group
    if (!is.list(c.m)) V<-c.m
    else
    { V<-matrix(0,n,n)   # data cor matrix
      gr.name <- names(c.m) # the names of the groups
      n.g<-length(c.m)   # number of innermost groups
      j0<-1
      ind<-ii<-1:n
      for (i in 1:n.g) 
      { j1<-j0+nrow(c.m[[i]])-1
        V[j0:j1,j0:j1]<-c.m[[i]]
        ind[j0:j1]<-ii[grps==gr.name[i]]
        j0<-j1+1  
      }
      V[ind,]<-V;V[,ind]<-V # pasting correlations into right place in overall matrix
      # V<-V*b$sigma^2
    }
  }  
  V <- as.vector(w)*t(as.vector(w)*V) # diag(w)%*%V%*%diag(w)
  # ... covariance matrix according to fitted correlation structure
  X<-list()
  grp.dims<-b$dims$ncol # number of Zt columns for each grouping level (inner levels first)
  # inner levels are first in Zt
  Zt<-model.matrix(b$modelStruct$reStruct,data)  # a sort of proto - Z matrix
  # b$groups and cov (defined below have the inner levels last)
  cov<-as.matrix(b$modelStruct$reStruct) # list of estimated covariance matrices (inner level last)
  i.col<-1
  n.levels<-length(b$groups)
  Z<-matrix(0,n,0) # Z matrix
  if (start.level<=n.levels)
  { for (i in 1:(n.levels-start.level+1)) # work through the r.e. groupings inner to outer
    { # get matrix with columns that are indicator variables for ith set of groups...
      # groups has outer levels first 
      if(length(levels(b$groups[[n.levels-i+1]]))==1) { ## model.matrix needs >1 level 
        X[[1]] <- matrix(rep(1,nrow(b$groups))) } else {
	clist <- list('b$groups[[n.levels - i + 1]]'=c("contr.treatment","contr.treatment"))
        X[[1]] <- model.matrix(~b$groups[[n.levels - i + 1]]-1,
                  contrasts.arg=clist) }
      # Get `model matrix' columns relevant to current grouping level...
      X[[2]] <- Zt[,i.col:(i.col+grp.dims[i]-1),drop=FALSE]
      i.col <- i.col+grp.dims[i]
      # tensor product the X[[1]] and X[[2]] rows...
      Z <- cbind(Z,tensor.prod.model.matrix(X))
    } # so Z assembled from inner to outer levels
    # Now construct overall ranef covariance matrix
    Vr <- matrix(0,ncol(Z),ncol(Z))
    start <- 1
    for (i in 1:(n.levels-start.level+1))
    { k <- n.levels-i+1
      for (j in 1:b$dims$ngrps[i]) 
      { stop <- start+ncol(cov[[k]])-1
        Vr[start:stop,start:stop]<-cov[[k]]
        start <- stop+1
      }
    }
    Vr <- Vr*b$sigma^2
    V <- V+Z%*%Vr%*%t(Z)
  }
  V
} ## extract.lme.cov

formXtViX <- function(V,X)
## forms X'V^{-1}X as efficiently as possible given the structure of
## V (diagonal, block-diagonal, full)
## Actually returns R where R'R =  X'V^{-1}X
{ X <- X[V$ind,,drop=FALSE] # have to re-order X according to V ordering
  if (is.list(V$V)) {     ### block diagonal case
    Z <- X
    j0 <- 1
    for (i in 1:length(V$V))
    { Cv <- chol(V$V[[i]])
      j1 <- j0+nrow(V$V[[i]])-1
      Z[j0:j1,] <- backsolve(Cv,X[j0:j1,,drop=FALSE],transpose=TRUE)
      j0 <- j1 + 1
    }
    #res <- t(Z)%*%Z
  } else if (is.matrix(V$V)) { ### full matrix case
    Cv <- chol(V$V)
    Z <- backsolve(Cv,X,transpose=TRUE)
    #res <- t(Z)%*%Z
  } else {                ### diagonal matrix case
    Z <- X/sqrt(as.numeric(V$V))
    #res <- t(X)%*%(X/as.numeric(V$V))
  }
  qrz <- qr(Z,LAPACK=TRUE)
  R <- qr.R(qrz);R[,qrz$pivot] <- R
  colnames(R) <- colnames(X)
  #res <- crossprod(R)
  #res
  R
}


new.name <- function(proposed,old.names)
# finds a name based on proposed, that is not in old.names
# if the proposed name is in old.names then ".xx" is added to it 
# where xx is a number chosen to ensure the a unique name
{ prop <- proposed
  k <- 0
  while (sum(old.names==prop))
  { prop<-paste(proposed,".",k,sep="")
    k <- k + 1
  }
  prop
}

gammPQL <- function (fixed, random, family, data, correlation, weights,
    control, niter = 30, verbose = TRUE, mustart=NULL, etastart=NULL, ...) {
## service routine for `gamm' to do PQL fitting. Based on glmmPQL
## from the MASS library (Venables & Ripley). Because `gamm' already
## does some of the preliminary stuff that glmmPQL does, gammPQL can
## be simpler. It also deals with the possibility of the original
## data frame containing variables called `zz' `wts' or `invwt'.
## Modified 2019 to use standard GLM initialization to improve convergence.
## Old glmmPQL style initialization commented out (single # first col) for
## eventual removal.
  off <- model.offset(data)
  if (is.null(off)) off <- 0
  
  y <- model.response(data) 
  nobs <- nrow(data) 
  if (is.null(weights)) weights <- rep(1, nrow(data))

  start <-  NULL ## never used
  if (is.null(mustart)) {
    eval(family$initialize)
  } else {
    mukeep <- mustart
    eval(family$initialize)
    mustart <- mukeep
  }
  #eval(family$initialize) ## NEW

  wts <- weights
# if (is.null(wts)) wts <- rep(1, nrow(data))
  wts.name <- new.name("wts",names(data)) ## avoid overwriting what's already in `data'
  data[[wts.name]] <- wts 
 
#  fit0 <- NULL ## keep checking tools happy 
  ## initial fit (might be better replaced with `gam' call)
#  eval(parse(text=paste("fit0 <- glm(formula = fixed, family = family, data = data,",
#                        "weights =",wts.name,",...)")))
#  w <- fit0$prior.weights
#  eta <- fit0$linear.predictors
  fam <- family
  eta <- if (!is.null(etastart)) 
            etastart
	 else fam$linkfun(mustart)
  mu <- fam$linkinv(eta)	 
  w <- wts;  
#  zz <- eta + fit0$residuals - off
  mu.eta.val <- fam$mu.eta(eta)
  zz <- eta + (y - mu)/mu.eta.val - off
#  wz <- fit0$weights
  wz <- w * mu.eta.val^2/fam$variance(mustart)
  
  ## find non clashing name for pseudodata and insert in formula
  zz.name <- new.name("zz",names(data))
  eval(parse(text=paste("fixed[[2]] <- quote(",zz.name,")")))
 
  data[[zz.name]] <- zz ## pseudodata to `data' 
  
  ## find non-clashing name for inverse weights, and make 
  ## varFixed formula using it...
  
  invwt.name <- new.name("invwt",names(data))
  data[[invwt.name]] <- 1/wz
  w.formula <- as.formula(paste("~",invwt.name,sep=""))

  converged <- FALSE 

  if (family$family %in% c("poisson","binomial")) {
    control$sigma <- 1 ## set scale parameter to 1
    control$apVar <- FALSE ## not available
  }

  for (i in 1:niter) {
    if (verbose) message(gettextf("iteration %d", i))
    fit <- lme(fixed=fixed,random=random,data=data,correlation=correlation,
             control=control,weights=varFixed(w.formula),method="ML",...)
    etaold <- eta
    eta <- fitted(fit) + off
    if (sum((eta - etaold)^2) < 1e-06 * sum(eta^2)) {
      converged <- TRUE
      break
    }
    mu <- fam$linkinv(eta)
    mu.eta.val <- fam$mu.eta(eta)
    ## get pseudodata and insert in `data' 
#    data[[zz.name]] <- eta + (fit0$y - mu)/mu.eta.val - off
    data[[zz.name]] <- eta + (y - mu)/mu.eta.val - off
    wz <- w * mu.eta.val^2/fam$variance(mu)
    data[[invwt.name]] <- 1/wz
  } ## end i in 1:niter
  if (!converged) warning("gamm not converged, try increasing niterPQL")
# fit$y <- fit0$y
  fit$y <- y 
  fit$w <- w ## prior weights
  fit
} ## gammPQL



gamm <- function(formula,random=NULL,correlation=NULL,family=gaussian(),data=list(),weights=NULL,
      subset=NULL,na.action,knots=NULL,control=list(niterEM=0,optimMethod="L-BFGS-B",returnObject=TRUE),
      niterPQL=20,verbosePQL=TRUE,method="ML",drop.unused.levels=TRUE,mustart=NULL, etastart=NULL,...)
# Routine to fit a GAMM to some data. Fixed and smooth terms are defined in the formula, but the wiggly 
# parts of the smooth terms are treated as random effects. The onesided formula random defines additional 
# random terms. correlation describes the correlation structure. This routine is basically an interface
# between the basis constructors provided in mgcv and the gammPQL routine used to estimate the model.
{ if (inherits(family,"extended.family")) warning("family are not designed for use with gamm!")
  ## lmeControl turns sigma=NULL into sigma=0, but if you supply sigma=0 rejects it,
  ## which will break the standard handling of the control list. Following line fixes.
  ## but actually Martin M has now fixed lmeControl...
  ##if (!is.null(control$sigma)&&control$sigma==0) control$sigma <- NULL
  if (inherits(family,"extended.family")) warning("gamm is not designed to use extended families")
  control <- do.call("lmeControl",control) 
    # check that random is a named list
    if (!is.null(random))
    { if (is.list(random)) 
      { r.names<-names(random)
        if (is.null(r.names)) stop("random argument must be a *named* list.")
        else if (sum(r.names=="")) stop("all elements of random list must be named")
      }
      else stop("gamm() can only handle random effects defined as named lists")
      random.vars<-c(unlist(lapply(random, function(x) all.vars(formula(x)))),r.names)
    } else random.vars<-NULL

    if (!is.null(correlation)) { 
      cor.for<-attr(correlation,"formula")
      if (!is.null(cor.for)) cor.vars<-all.vars(cor.for)
    } else cor.vars<-NULL

    ## now establish whether weights is varFunc or not...  
    wisvf <- try(inherits(weights,"varFunc"),silent=TRUE)
    if (inherits(wisvf,"try-error")) wisvf <- FALSE
    if (wisvf) { ## collect its variables
      if (inherits(weights,"varComb")) { ## actually a list of varFuncs
        vf.vars <- rep("",0)
        for (i in 1:length(weights)) {
          vf.vars <- c(vf.vars,all.vars(attr(weights[[i]],"formula")))
        }
        vf.vars <- unique(vf.vars)
      } else { ## single varFunc
        vf.for<-attr(weights,"formula")
        if (!is.null(vf.for)) vf.vars<-all.vars(vf.for)
      }
    } else vf.vars <- NULL

    # create model frame.....
    gp <- interpret.gam(formula) # interpret the formula 
    ##cl<-match.call() # call needed in gamm object for update to work
    mf <- match.call(expand.dots=FALSE)
    mf$formula <- gp$fake.formula
    if (wisvf) {
      mf$correlation <- mf$random <- mf$family <- mf$control <- mf$scale <- mf$knots <- mf$sp <- mf$weights <-
      mf$min.sp <- mf$H <- mf$gamma <- mf$fit <- mf$niterPQL <- mf$verbosePQL <- mf$G <- mf$method <- mf$... <- NULL
    } else {
      mf$correlation <- mf$random <- mf$family <- mf$control <- mf$scale <- mf$knots <- mf$sp <-
      mf$min.sp <- mf$H <- mf$gamma <- mf$fit <- mf$niterPQL <- mf$verbosePQL <- mf$G <- mf$method <- mf$... <- NULL
    }
    mf$drop.unused.levels <- drop.unused.levels
    mf[[1]] <- quote(stats::model.frame) ## as.name("model.frame")
    pmf <- mf
    gmf <- eval(mf, parent.frame()) # the model frame now contains all the data, for the gam part only 
    gam.terms <- attr(gmf,"terms") # terms object for `gam' part of fit -- need this for prediction to work properly

    if (!wisvf) weights <- gmf[["(weights)"]]

    allvars <- c(cor.vars,random.vars,vf.vars)
    if (length(allvars)) {
      mf$formula <- as.formula(paste(paste(deparse(gp$fake.formula,backtick=TRUE),collapse=""),
                           "+",paste(allvars,collapse="+")))
      mf <- eval(mf, parent.frame()) # the model frame now contains *all* the data
    }
    else mf <- gmf
    rm(gmf)
    if (nrow(mf)<2) stop("Not enough (non-NA) data to do anything meaningful")
    ##Terms <- attr(mf,"terms")    
  
    ## summarize the *raw* input variables
    ## note can't use get_all_vars here -- buggy with matrices
    vars <- all_vars1(gp$fake.formula[-2]) ## drop response here
    inp <- parse(text = paste("list(", paste(vars, collapse = ","),")"))
    dl <- eval(inp, data, parent.frame())
    names(dl) <- vars ## list of all variables needed
    var.summary <- variable.summary(gp$pf,dl,nrow(mf)) ## summarize the input data
    rm(dl) ## save space 

    pmf$formula <- gp$pf
    pmf <- eval(pmf, parent.frame()) # pmf contains all data for parametric part 
    pTerms <- attr(pmf,"terms")

    if (is.character(family)) family<-eval(parse(text=family))
    if (is.function(family)) family <- family()
    if (is.null(family$family)) stop("family not recognized")
  
    # now call gamm.setup 

    G <- gamm.setup(gp,pterms=pTerms,
                    data=mf,knots=knots,parametric.only=FALSE,absorb.cons=TRUE)
    #G$pterms <- pTerms
    G$var.summary <- var.summary    
    mf <- G$data

    n.sr <- length(G$random) # number of random smooths (i.e. s(...,fx=FALSE,...) terms)

    if (is.null(random)&&n.sr==0) 
    stop("gamm models must have at least 1 smooth with unknown smoothing parameter or at least one other random effect")

    offset.name <- attr(mf,"names")[attr(attr(mf,"terms"),"offset")]

    yname <- new.name("y",names(mf))
    eval(parse(text=paste("mf$",yname,"<-G$y",sep="")))
    Xname <- new.name("X",names(mf))
    eval(parse(text=paste("mf$",Xname,"<-G$X",sep="")))
    
    fixed.formula <- paste(yname,"~",Xname,"-1")
    ## following appears to serve no purpose except confusing later lme versions
    #if (length(offset.name)) {
    #  fixed.formula <- paste(fixed.formula,"+",offset.name) 
    #}
    fixed.formula <- as.formula(fixed.formula)
    
    ## Add any explicit random effects to the smooth induced r.e.s 
    rand <- G$random  
    if (!is.null(random))
    { r.m <- length(random)
      r.names <- c(names(rand),names(random))
      for (i in 1:r.m) rand[[n.sr+i]]<-random[[i]]   
      names(rand) <- r.names
    }

    ## need to modify the correlation structure formula, in order that any
    ## grouping factors for correlation get nested within at least the 
    ## constructed dummy grouping factors.

    if (length(formula(correlation))) # then modify the correlation formula
    { # first get the existing grouping structure ....
      corGroup <- paste(names(rand),collapse="/")
      groupForm<-nlme::getGroupsFormula(correlation)
      if (!is.null(groupForm)) {
        groupFormNames <- all.vars(groupForm)
        exind <- groupFormNames %in% names(rand)
        groupFormNames <- groupFormNames[!exind] ## dumping duplicates 
        if (length(groupFormNames)) corGroup <- 
             paste(corGroup,paste(groupFormNames,collapse="/"),sep="/")
      }
      # now make a new formula for the correlation structure including these groups
      corForm <- as.formula(paste(deparse(nlme::getCovariateFormula(correlation)),"|",corGroup))
      attr(correlation,"formula") <- corForm
    }

    ### Actually do fitting ....
 
    ret <- list()

    if (family$family=="gaussian"&&family$link=="identity"&&
    length(offset.name)==0) lme.used <- TRUE else lme.used <- FALSE
    if (lme.used&&!is.null(weights)&&!wisvf) lme.used <- FALSE   

    if (lme.used) { ## following construction is a work-around for problem in nlme 3-1.52 
      eval(parse(text=paste("ret$lme<-lme(",deparse(fixed.formula),
          ",random=rand,data=strip.offset(mf),correlation=correlation,",
          "control=control,weights=weights,method=method)"
            ,sep=""    )))
      ## need to be able to work out full edf for following to work...	    
      # if (is.null(correlation)) { ## compute conditional aic precursor
      #  dev <- sum(family$dev.resids(G$y,fitted(ret$lme),weights))
      #	ret$lme$aic <- family$aic(G$y,1,fitted(ret$lme),weights,dev)
      # }
      ##ret$lme<-lme(fixed.formula,random=rand,data=mf,correlation=correlation,control=control)
    } else { ## Again, construction is a work around for nlme 3-1.52
      if (wisvf) stop("weights must be like glm weights for generalized case")
      if (verbosePQL) cat("\n Maximum number of PQL iterations: ",niterPQL,"\n")
      eval(parse(text=paste("ret$lme<-gammPQL(",deparse(fixed.formula),
          ",random=rand,data=strip.offset(mf),family=family,",
          "correlation=correlation,control=control,",
            "weights=weights,niter=niterPQL,verbose=verbosePQL,mustart=mustart,etastart=etastart,...)",sep=""))) 
      G$y <- ret$lme$y ## makes sure that binomial response is returned as a vector!
     
    }

    ### .... fitting finished

    # now fake a gam object 
    
    object <- list(model=mf,formula=formula,smooth=G$smooth,nsdf=G$nsdf,family=family,
                 df.null=nrow(G$X),y=G$y,terms=gam.terms,pterms=G$pterms,xlevels=G$xlevels,
                 contrasts=G$contrasts,assign=G$assign,na.action=attr(mf,"na.action"),
                 cmX=G$cmX,var.summary=G$var.summary,scale.estimated=TRUE)
    
    pvars <- all.vars(delete.response(object$terms))
    object$pred.formula <- if (length(pvars)>0) reformulate(pvars) else NULL

    #######################################################
    ## Transform  parameters back to the original space....
    #######################################################

    bf <- as.numeric(ret$lme$coefficients$fixed)

#    br <- as.numeric(unlist(ret$lme$coefficients$random))

    ## Grouped random coefs are returned in matrices. Each row relates to one 
    ## level of the grouping factor. So to get coefs in order, with all coefs
    ## for each grouping factor level contiguous, requires the following...
 
    br <- as.numeric(unlist(lapply(ret$lme$coefficients$random,t)))

    fs.present <- FALSE

    if (G$nsdf) p <- bf[1:G$nsdf] else p <- array(0,0)
    if (G$m>0) for (i in 1:G$m)
    { fx <- G$smooth[[i]]$fixed 
      first <- G$smooth[[i]]$first.f.para;last <- G$smooth[[i]]$last.f.para
      if (first <=last) beta <- bf[first:last] else beta <- array(0,0) ## fixed coefs
      if (fx) p <- c(p, beta) else { ## not fixed so need to undo transform of random effects etc. 
        ind <- G$smooth[[i]]$rind ##G$smooth[[i]]$first.r.para:G$smooth[[i]]$last.r.para
        if (!is.null(G$smooth[[i]]$fac)) { ## nested term, need to unpack coefs at each level of fac
          fs.present <- TRUE
          if (first<=last) stop("Nested smooths must be fully random")
          flev <- levels(G$smooth[[i]]$fac)
          for (j in 1:length(flev)) {
            b <- br[ind] 
            b <- G$smooth[[i]]$trans.D*b
            if (!is.null(G$smooth[[i]]$trans.U)) b <- G$smooth[[i]]$trans.U%*%b
            ind <- ind + G$smooth[[i]]$rinc
            p <- c(p,b)
          }
        } else { ## single level
          b <- c(br[ind],beta)
          b <- G$smooth[[i]]$trans.D*b
          if (!is.null(G$smooth[[i]]$trans.U)) b <- G$smooth[[i]]$trans.U%*%b 
          p <- c(p,b)
        }
      }
    }
 
    var.param <- coef(ret$lme$modelStruct$reStruct)
    n.v <- length(var.param) 
    # k <- 1
    spl <- list()
    if (G$m>0) for (i in 1:G$m) # var.param in reverse term order, but forward order within terms!!
    { ii <- G$pord[i]
      n.sp <- length(object$smooth[[ii]]$S) # number of s.p.s for this term 
      if (n.sp>0) {
        if (inherits(object$smooth[[ii]],"tensor.smooth")) ## ... really mean pdTens used here...
        ## object$sp[k:(k+n.sp-1)] 
          spl[[ii]] <- notExp2(var.param[(n.v-n.sp+1):n.v])
        else ## object$sp[k:(k+n.sp-1)] 
          spl[[ii]] <- 1/notExp2(var.param[n.v:(n.v-n.sp+1)])  
      }
      # k <- k + n.sp
      n.v <- n.v - n.sp
    }
    
    object$sp <- rep(0,0)
    if (length(spl)) for (i in 1:length(spl)) if (!is.null(spl[[i]])) object$sp <- c(object$sp,spl[[i]]) 
    if (length(object$sp)==0) object$sp <- NULL  

    object$coefficients <- p
    
    V <- extract.lme.cov2(ret$lme,mf,n.sr+1) # the data covariance matrix, excluding smooths
 

    ## obtain XVX and S....
    first.para <- last.para <- rep(0,G$m) ## collect first and last para info relevant to expanded Xf
    if (fs.present) { ## First create expanded Xf...
      Xf <- G$Xf[,1:G$nsdf,drop=FALSE] 
      if (G$m>0) for (i in 1:G$m) {# Accumulate the total model matrix
        ind <- object$smooth[[i]]$first.para:object$smooth[[i]]$last.para
        if (is.null(object$smooth[[i]]$fac)) { ## normal smooth
           first.para[i] <- ncol(Xf)+1
           Xf <- cbind(Xf,G$Xf[,ind])
           last.para[i] <- ncol(Xf)
        } else { ## smooth conditioned on multilevel factor. Expand Xf
          flev <- levels(object$smooth[[i]]$fac)
          first.para[i] <- ncol(Xf)+1
          for (k in 1:length(flev)) {
            Xf <- cbind(Xf,G$Xf[,ind]*as.numeric(object$smooth[[i]]$fac==flev[k]))
          }
          last.para[i] <- ncol(Xf)
        }
      }

      object$R <- formXtViX(V,Xf) ## inefficient, if there are smooths conditioned on factors
      XVX <- crossprod(object$R)
      nxf <- ncol(Xf)
    } else {
      if (G$m>0) for (i in 1:G$m) {
        first.para[i] <- object$smooth[[i]]$first.para
        last.para[i] <- object$smooth[[i]]$last.para
      }
      object$R <- formXtViX(V,G$Xf)
      XVX <- crossprod(object$R)
      nxf <- ncol(G$Xf)
    }

    object$R <- object$R*ret$lme$sigma ## correction to what is required by summary.gam

    ## Now S...
    S <- matrix(0,nxf,nxf) ## penalty matrix
    first <- G$nsdf+1
    k <- 1
    if (G$m>0) for (i in 1:G$m) {# Accumulate the total penalty matrix 
      if (is.null(object$smooth[[i]]$fac)) { ## simple regular smooth...
        ind <- first.para[i]:last.para[i]
        ns <-length(object$smooth[[i]]$S) 
        if (ns) for (l in 1:ns) { 
           S[ind,ind] <- S[ind,ind] + 
                  object$smooth[[i]]$S[[l]]*object$sp[k]
           k <- k+1
        }
      } else { ## smooth conditioned on factor
        flev <- levels(object$smooth[[i]]$fac)
        ind <- first.para[i]:(first.para[i]+object$smooth[[i]]$n.para-1)
        ns <- length(object$smooth[[i]]$S)
        for (j in 1:length(flev)) {
           if (ns) for (l in 1:ns) { 
             S[ind,ind] <- S[ind,ind] + 
                    object$smooth[[i]]$S[[l]]*object$sp[k]
             k <- k+1
           }
           k <- k - ns ## same smoothing parameters repeated for each factor level
           ind <- ind + object$smooth[[i]]$n.para
        }
        k <- k + ns
      }
    }
    S <- S/ret$lme$sigma^2 # X'V^{-1}X divided by \sigma^2, so should S be
    
    ## now replace original first.para and last.para with expanded versions...
    if (G$m) for (i in 1:G$m) { 
      object$smooth[[i]]$first.para <- first.para[i]
      object$smooth[[i]]$last.para <- last.para[i] 
    }
    ## stable computation of coefficient covariance matrix...
    ev <- eigen(XVX+S,symmetric=TRUE)
    ind <- ev$values != 0
    iv <- ev$values;iv[ind] <- 1/ev$values[ind]
    Vb <- ev$vectors%*%(iv*t(ev$vectors))    

    object$edf<-rowSums(Vb*t(XVX))   
    object$df.residual <- length(object$y) - sum(object$edf)    

    #if (!is.null(ret$lme$aic)) { ## finish the conditional AIC (only happens if no correlation) 
    #  object$aic <- ret$lme$aic + sum(object$edf) ## requires edf for r.e. as well!
    #  ret$lme$aic<- NULL
    #}

    object$sig2 <- ret$lme$sigma^2
    if (lme.used) { object$method <- paste("lme.",method,sep="")} 
    else { object$method <- "PQL"}

    if (!lme.used||method=="ML") Vb <- Vb*length(G$y)/(length(G$y)-G$nsdf)
    object$Vp <- Vb
    object$Ve <- Vb%*%XVX%*%Vb
    
    object$prior.weights <- weights
    class(object) <- "gam"

    ## If prediction parameterization differs from fit parameterization, transform now...
    ## (important for t2 smooths, where fit constraint is not good for component wise 
    ##  prediction s.e.s)

    if (!is.null(G$P)) {
      object$coefficients <- G$P %*% object$coefficients
      object$Vp <- G$P %*% object$Vp %*% t(G$P) 
      object$Ve <- G$P %*% object$Ve %*% t(G$P) 
    }

    object$linear.predictors <- predict.gam(object,type="link")
    object$fitted.values <- object$family$linkinv(object$linear.predictors)  
 
    object$residuals <- residuals(ret$lme) #as.numeric(G$y) - object$fitted.values

    if (G$nsdf>0) term.names<-colnames(G$X)[1:G$nsdf] else term.names<-array("",0)
    n.smooth <- length(G$smooth) 
    if (n.smooth) {
      for (i in 1:n.smooth)
      { k <- 1
        for (j in object$smooth[[i]]$first.para:object$smooth[[i]]$last.para)
        { term.names[j] <- paste(object$smooth[[i]]$label,".",as.character(k),sep="")
          k <- k+1
        }
      }
      if (!is.null(object$sp)) names(object$sp) <- names(G$sp)
    }

    names(object$coefficients) <- term.names  # note - won't work on matrices!!
    names(object$edf) <- term.names
    if (is.null(weights)) object$prior.weights <- object$y*0+1
    else if (wisvf) object$prior.weights <- varWeights.dfo(ret$lme,mf)^2
    else object$prior.weights <- ret$lme$w
    
    object$weights <- object$prior.weights   

    if (!is.null(G$Xcentre)) object$Xcentre <- G$Xcentre ## column centering values
    ## set environments to global to avoid enormous saved object files
    environment(attr(object$model,"terms")) <- 
    environment(object$terms) <- environment(object$pterms) <- 
    environment(object$formula) <- .GlobalEnv
    if (!is.null(object$pred.formula)) environment(object$pred.formula) <-  .GlobalEnv
    ret$gam <- object
    environment(attr(ret$lme$data,"terms")) <- environment(ret$lme$terms) <- .GlobalEnv
    if (!is.null(ret$lme$modelStruct$varStruct)) {
      environment(attr(ret$lme$modelStruct$varStruct,"formula")) <- .GlobalEnv
    }  
    if (!is.null(ret$lme$modelStruct$corStruct)) {
      environment(attr(ret$lme$modelStruct$corStruct,"formula")) <- .GlobalEnv
    }
    class(ret) <- c("gamm","list")
    ret

} ## end gamm



test.gamm <- function(control=nlme::lmeControl(niterEM=3,tolerance=1e-11,msTol=1e-11))
## this function is a response to repeated problems with nlme/R updates breaking
## the pdTens class. It tests for obvious breakages!
{ test1<-function(x,z,sx=0.3,sz=0.4)
  { x<-x*20
    (pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+
    0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2))
  }
  compare <- function(b,b1,edf.tol=.001) 
  { edf.diff <- abs(sum(b$edf)-sum(b1$edf))
    fit.cor <- cor(fitted(b),fitted(b1))
    if (fit.cor<.999) { cat("FAILED: fit.cor = ",fit.cor,"\n");return()}
    if (edf.diff>edf.tol) { cat("FAILED: edf.diff = ",edf.diff,"\n");return()}
    cat("PASSED \n")
  }
  n<-500
  x<-runif(n)/20;z<-runif(n);
  f <- test1(x,z)
  y <- f + rnorm(n)*0.2
  control$sigma <- NULL ## avoid failure on silly test
  cat("testing covariate scale invariance ... ")  
  b <- gamm(y~te(x,z), control=control )
  x1 <- x*100 
  b1 <- gamm(y~te(x1,z),control=control)
  res <- compare(b$gam,b1$gam)
 
  cat("testing invariance w.r.t. response ... ")
  y1 <- y*100 
  b1 <- gamm(y1~te(x,z),control=control)
  res <- compare(b$gam,b1$gam)
  
  cat("testing equivalence of te(x) and s(x) ... ")
  b2 <- gamm(y~te(x,k=10,bs="cr"),control=control)
  b1 <- gamm(y~s(x,bs="cr",k=10),control=control)
  res <- compare(b2$gam,b1$gam,edf.tol=.1)

  cat("testing equivalence of gam and gamm with same sp ... ")
  b1 <- gam(y~te(x,z),sp=b$gam$sp)
  res <- compare(b$gam,b1)  
  
  if (FALSE) cat(res,x1,y1) ## fool codetools
}

Try the mgcv package in your browser

Any scripts or data that you put into this service are public.

mgcv documentation built on May 29, 2024, 4:34 a.m.