Nothing
## R routines for mgcv::gamm (c) Simon Wood 2002-2019
### the following two functions are for use in place of log and exp
### in positivity ensuring re-parameterization.... they have `better'
### over/underflow characteristics, but are still continuous to second
### derivative.
notExp <- function(x)
# overflow avoiding C2 function for ensuring positivity
{ f <- x
ind <- x > 1
f[ind] <- exp(1)*(x[ind]^2+1)/2
ind <- (x <= 1)&(x > -1)
f[ind] <- exp(x[ind])
ind <- (x <= -1)
x[ind] <- -x[ind] ;f[ind] <- exp(1)*(x[ind]^2+1)/2; f[ind]<-1/f[ind]
f
}
notLog <- function(x)
# inverse function of notExp
{ f <- x
ind <- x> exp(1)
f[ind] <- sqrt(2*x[ind]/exp(1)-1)
ind <- !ind & x > exp(-1)
f[ind] <- log(x[ind])
ind <- x <= exp(-1)
x[ind]<- 1/x[ind]; f[ind] <- sqrt(2*x[ind]/exp(1)-1);f[ind] <- -f[ind]
f
}
## notLog/notExp replacements.
## around 27/7/05 nlme was modified to use a new optimizer, which fails with
## indefinite Hessians. This is a problem if smoothing parameters are zero
## or infinite. The following attempts to make the notLog parameterization
## non-monotonic, to artificially reduce the likelihood at very large and very
## small parameter values.
## note gamm, pdTens, pdIdnot, notExp and notExp2 .Rd files all modified by
## this change.
notExp2 <- function (x,d=.Options$mgcv.vc.logrange,b=1/d)
## to avoid needing to modify solve.pdIdnot, this transformation must
## maintain the property that 1/notExp2(x) = notExp2(-x)
{ exp(d*sin(x*b))
}
notLog2 <- function(x,d=.Options$mgcv.vc.logrange,b=1/d)
{ x <- log(x)/d
x <- pmin(1,x)
x <- pmax(-1,x)
asin(x)/b
}
#### pdMat class definitions, to enable tensor product smooths to be employed with gamm()
#### Based on various Pinheiro and Bates pdMat classes.
pdTens <- function(value = numeric(0), form = NULL, nam = NULL, data = sys.frame(sys.parent()))
## Constructor for the pdTens pdMat class:
# the inverse of the scaled random effects covariance matrix for this class
# is given by a weighted sum of the matrices in the list that is the "S" attribute of
# a pdTens formula. The weights are the exponentials of the class parameters.
# i.e. the inverse of the r.e. covariance matrix is
# \sum_i \exp(\theta_i) S_i / \sigma^2
# The class name relates to the fact that these objects are used with tensor product smooths.
{
object <- numeric(0)
class(object) <- c("pdTens", "pdMat")
nlme::pdConstruct(object, value, form, nam, data)
}
## Methods for local generics
pdConstruct.pdTens <-
function(object, value = numeric(0), form = formula(object),
nam = nlme::Names(object), data = sys.frame(sys.parent()), ...)
## used to initialize pdTens objects. Note that the initialization matrices supplied
## are (factors of) trial random effects covariance matrices or their inverses.
## Which one is being passed seems to have to be derived from looking at its
## structure.
## Class tested rather thoroughly with nlme 3.1-52 on R 2.0.0
{
val <- NextMethod()
if (length(val) == 0) { # uninitiliazed object
class(val) <- c("pdTens","pdMat")
return(val)
}
if (is.matrix(val)) { # initialize from a positive definite
S <- attr(form,"S")
m <- length(S)
## codetools gets it wrong about `y'
y <- as.numeric((crossprod(val))) # it's a factor that gets returned in val
lform <- "y ~ as.numeric(S[[1]])"
if (m>1) for (i in 2:m) lform <- paste(lform," + as.numeric(S[[",i,"]])",sep="")
lform <- formula(paste(lform,"-1"))
mod1 <- lm(lform)
mod1.r2 <- 1-sum(residuals(mod1)^2)/sum((y-mean(y))^2)
y <- as.numeric(solve(crossprod(val))) ## ignore codetools complaint about this
mod2 <- lm(lform)
mod2.r2 <- 1-sum(residuals(mod2)^2)/sum((y-mean(y))^2)
## `value' and `val' can relate to the cov matrix or its inverse:
## the following seems to be only way to tell which.
#if (summary(mod2)$r.sq>summary(mod1)$r.sq) mod1<-mod2
if (mod2.r2 > mod1.r2) mod1 <- mod2
value <- coef(mod1)
value[value <=0] <- .Machine$double.eps * mean(as.numeric(lapply(S,function(x) max(abs(x)))))
value <- notLog2(value)
attributes(value) <- attributes(val)[names(attributes(val)) != "dim"]
class(value) <- c("pdTens", "pdMat")
return(value)
}
m <- length(attr(form,"S"))
if ((aux <- length(val)) > 0) {
if (aux && (aux != m)) {
stop(gettextf("An object of length %d does not match the required parameter size",aux))
}
}
class(val) <- c("pdTens","pdMat")
val
}
pdFactor.pdTens <- function(object)
## The factor of the inverse of the scaled r.e. covariance matrix is returned here
## it should be returned as a vector.
{ sp <- as.vector(object)
m <- length(sp)
S <- attr(formula(object),"S")
value <- S[[1]]*notExp2(sp[1])
if (m>1) for (i in 2:m) value <- value + notExp2(sp[i])*S[[i]]
if (sum(is.na(value))>0) warning("NA's in pdTens factor")
value <- (value+t(value))/2
c(t(mroot(value,rank=nrow(value))))
}
pdMatrix.pdTens <-
function(object, factor = FALSE)
# the inverse of the scaled random effect covariance matrix is returned here, or
# its factor if factor==TRUE. If A is the matrix being factored and B its
# factor, it is required that A=B'B (not the mroot() default!)
{
if (!nlme::isInitialized(object)) {
stop("Cannot extract the matrix from an uninitialized object")
}
sp <- as.vector(object)
m <- length(sp)
S <- attr(formula(object),"S")
value <- S[[1]]*notExp2(sp[1])
if (m>1) for (i in 2:m) value <- value + notExp2(sp[i])*S[[i]]
value <- (value + t(value))/2 # ensure symmetry
if (sum(is.na(value))>0) warning("NA's in pdTens matrix")
if (factor) {
value <- t(mroot(value,rank=nrow(value)))
}
dimnames(value) <- attr(object, "Dimnames")
value
}
#### Methods for standard generics
coef.pdTens <-
function(object, unconstrained = TRUE, ...)
{
if (unconstrained) NextMethod()
else {
val <- notExp2(as.vector(object))
names(val) <- paste("sp.",1:length(val), sep ="")
val
}
}
summary.pdTens <-
function(object, structName = "Tensor product smooth term", ...)
{
NextMethod(object, structName, noCorrelation=TRUE)
}
# .... end of pdMat definitions for tensor product smooths
### pdIdnot: multiple of the identity matrix - the parameter is
### the notLog2 of the multiple. This is directly modified form
### Pinheiro and Bates pdIdent class.
####* Constructor
pdIdnot <-
## Constructor for the pdIdnot class
function(value = numeric(0), form = NULL, nam = NULL, data = sys.frame(sys.parent()))
{ #cat(" pdIdnot ")
object <- numeric(0)
class(object) <- c("pdIdnot", "pdMat")
nlme::pdConstruct(object, value, form, nam, data)
}
####* Methods for local generics
corMatrix.pdIdnot <-
function(object, ...)
{
if (!nlme::isInitialized(object)) {
stop("Cannot extract the matrix from an uninitialized pdMat object")
}
if (is.null(Ncol <- attr(object, "ncol"))) {
stop(paste("Cannot extract the matrix with uninitialized dimensions"))
}
val <- diag(Ncol)
## REMOVE sqrt() to revert ...
attr(val, "stdDev") <- rep(sqrt(notExp2(as.vector(object))), Ncol)
if (length(nm <- nlme::Names(object)) == 0) {
len <- length(as.vector(object))
nm <- paste("V", 1:len, sep = "")
dimnames(val) <- list(nm, nm)
}
names(attr(val, "stdDev")) <- nm
val
}
pdConstruct.pdIdnot <-
function(object, value = numeric(0), form = formula(object),
nam = nlme::Names(object), data = sys.frame(sys.parent()), ...)
{ #cat(" pdConstruct.pdIdnot ")
val <- NextMethod()
if (length(val) == 0) { # uninitialized object
if ((ncol <- length(nlme::Names(val))) > 0) {
attr(val, "ncol") <- ncol
}
return(val)
}
if (is.matrix(val)) {
# value <- notLog2(sqrt(mean(diag(crossprod(val)))))
value <- notLog2(mean(diag(crossprod(val)))) ## REPLACE by above to revert
attributes(value) <- attributes(val)[names(attributes(val)) != "dim"]
attr(value, "ncol") <- dim(val)[2]
class(value) <- c("pdIdnot", "pdMat")
return(value)
}
if (length(val) > 1) {
stop(paste("An object of length", length(val),
"does not match the required parameter size"))
}
if (((aux <- length(nlme::Names(val))) == 0) && is.null(formula(val))) {
stop(paste("Must give names when initializing pdIdnot from parameter.",
"without a formula"))
} else {
attr(val, "ncol") <- aux
}
val
}
pdFactor.pdIdnot <-
function(object)
{ ## UNCOMMENT first line, comment 2nd to revert
# notExp2(as.vector(object)) * diag(attr(object, "ncol"))
#cat(" pdFactor.pdIdnot ")
sqrt(notExp2(as.vector(object))) * diag(attr(object, "ncol"))
}
pdMatrix.pdIdnot <-
function(object, factor = FALSE)
{ #cat(" pdMatrix.pdIdnot ")
if (!nlme::isInitialized(object)) {
stop("Cannot extract the matrix from an uninitialized pdMat object")
}
if (is.null(Ncol <- attr(object, "ncol"))) {
stop(paste("Cannot extract the matrix with uninitialized dimensions"))
}
value <- diag(Ncol)
## REPLACE by #1,#2,#3 to revert
if (factor) {
#1 value <- notExp2(as.vector(object)) * value
#2 attr(value, "logDet") <- Ncol * log(notExp2(as.vector(object)))
value <- sqrt(notExp2(as.vector(object))) * value
attr(value, "logDet") <- Ncol * log(notExp2(as.vector(object)))/2
} else {
#3 value <- notExp2(as.vector(object))^2 * value
value <- notExp2(as.vector(object)) * value
}
dimnames(value) <- attr(object, "Dimnames")
value
}
####* Methods for standard generics
coef.pdIdnot <-
function(object, unconstrained = TRUE, ...)
{ #cat(" coef.pdIdnot ")
if (unconstrained) NextMethod()
else structure(notExp2(as.vector(object)),
names = c(paste("sd(", deparse(formula(object)[[2]],backtick=TRUE),")",sep = "")))
}
Dim.pdIdnot <-
function(object, ...)
{
if (!is.null(val <- attr(object, "ncol"))) {
c(val, val)
} else {
stop("Cannot extract the dimensions")
}
}
logDet.pdIdnot <-
function(object, ...)
{ ## REMOVE /2 to revert ....
attr(object, "ncol") * log(notExp2(as.vector(object)))/2
}
solve.pdIdnot <-
function(a, b, ...)
{
if (!nlme::isInitialized(a)) {
stop("Cannot extract the inverse from an uninitialized object")
}
atr <- attributes(a)
a <- -coef(a, TRUE)
attributes(a) <- atr
a
}
summary.pdIdnot <-
function(object, structName = "Multiple of an Identity", ...)
{ #cat(" summary.pdIdnot ")
# summary.pdMat(object, structName, noCorrelation = TRUE)
## ... summary.pdMat is not exported in the nlme NAMESPACE file, so....
NextMethod(object, structName, noCorrelation=TRUE)
}
### end of pdIdnot class
smooth2random <- function(object,vnames,type=1) UseMethod("smooth2random")
smooth2random.fs.interaction <- function(object,vnames,type=1) {
## conversion method for smooth-factor random interactions.
## For use with gamm4, this needs to generate a sparse version of
## each full model matrix, with smooth coefs re-ordered so that the
## penalties are not interwoven, but blocked (i.e. this ordering is
## as for gamm case).
if (object$fixed) return(list(fixed=TRUE,Xf=object$X))
## If smooth constructor was not called with "gamm" attribute set,
## then we need to reset model matrix to base model matrix.
if (!is.null(object$Xb)) {
object$X <- object$Xb
object$S <- object$base$S
if (!is.null(object$S.scale)&&length(object$S)>0) for (i in 1:length(object$S)) object$S[[i]] <- object$S[[i]]/object$S.scale[i]
}
colx <- ncol(object$X)
diagU <- rep(1,colx)
ind <- 1:colx
## flev <- levels(object$fac)
n.lev <- length(object$flev)
if (type==2) {
## index which params in fit parameterization are penalized by each penalty.
## e.g. pen.ind==1 is TRUE for each param penalized by first penalty and
## FALSE otherwise...
pen.ind <- rep(ind*0,n.lev)
} else pen.ind <- NULL
random <- list()
k <- 1
rinc <- rind <- rep(0,0)
for (i in 1:length(object$S)) { ## work through penalties
indi <- ind[diag(object$S[[i]])!=0] ## index of penalized cols
X <- object$X[,indi,drop=FALSE] ## model matrix for this component
D <- diag(object$S[[i]])[indi]
diagU[indi] <- 1/sqrt(D) ## transform that reduces penalty to identity
X <- X%*%diag(diagU[indi],ncol=length(indi))
term.name <- new.name("Xr",vnames)
vnames <- c(vnames,term.name)
rind <- c(rind,k:(k+ncol(X)-1))
rinc <- c(rinc,rep(ncol(X),ncol(X)))
k <- k + n.lev * ncol(X)
if (type==1) { ## gamm form for use with lme
## env set to avoid 'save' saving whole environment to file...
form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
fname <- new.name(object$fterm,vnames)
vnames <- c(vnames,fname)
random[[i]] <- pdIdnot(form)
names(random)[i] <- fname ## supplied factor name
attr(random[[i]],"group") <- object$fac ## factor supplied as part of term
attr(random[[i]],"Xr.name") <- term.name
attr(random[[i]],"Xr") <- X
} else { ## gamm4 form --- whole sparse matrices
## Xr <- as(matrix(0,nrow(X),0),"dgCMatrix") - deprecated, use...
Xr <- as(as(as(matrix(0,nrow(X),0), "dMatrix"), "generalMatrix"), "CsparseMatrix")
ii <- 0
for (j in 1:n.lev) { ## assemble full sparse model matrix
## Xr <- cbind2(Xr,as(X*as.numeric(object$fac==object$flev[j]),"dgCMatrix")) - deprecated
Xr <- cbind2(Xr,
as(as(as(X*as.numeric(object$fac==object$flev[j]), "dMatrix"), "generalMatrix"), "CsparseMatrix"))
pen.ind[indi+ii] <- i;ii <- ii + colx
}
random[[i]] <- if (is.null(object$Xb)) Xr else as(Xr,"matrix")
names(random)[i] <- term.name
attr(random[[i]],"s.label") <- object$label
}
}
if (type==2) {
## expand the rind (rinc not needed)
ind <- 1:length(rind)
ni <- length(ind)
rind <- rep(rind,n.lev)
if (n.lev>1) for (k in 2:n.lev) {
rind[ind+ni] <- rind[ind]+rinc
ind <- ind + ni
}
D <- rep(diagU,n.lev)
} else D <- diagU ## b_original = D*b_fit
Xf <- matrix(0,nrow(object$X),0)
list(rand=random,trans.D=D,Xf=Xf,fixed=FALSE,rind=rind,rinc=rinc,
pen.ind=pen.ind) ## pen.ind==i is TRUE for coefs penalized by ith penalty
} ## smooth2random.fs.interaction
smooth2random.t2.smooth <- function(object,vnames,type=1) {
## takes a smooth object and turns it into a form suitable for estimation as a random effect
## vnames is a list of names to avoid when assigning variable names.
## type==1 indicates an lme random effect.
## Returns 1. a list of random effects, including grouping factors, and
## a fixed effects matrix. Grouping factors, model matrix and
## model matrix name attached as attributes, to each element.
## 2. rind: and index vector such that if br is the vector of
## random coefficients for the term, br[rind] is the coefs in
## order for this term. rinc - dummy here.
## 3. A matrix, trans.D, that transforms coefs, in order [rand1, rand2,... fix]
## back to original parameterization. If null, then not needed.
## 4. A matrix Xf for the fixed effects, if any.
## 5. fixed TRUE/FALSE if its fixed or not. If fixed the other stuff is
## not returned.
## This version deals only with t2 smooths conditioned on a whole
## dataset dummy factor.
## object must contain model matrix for smooth.
if (object$fixed) return(list(fixed=TRUE,Xf=object$X))
fixed <- rep(TRUE,ncol(object$X))
random <- list()
diagU <- rep(1,ncol(object$X))
ind <- 1:ncol(object$X)
pen.ind <- ind*0
n.para <- 0
for (i in 1:length(object$S)) { ## work through penalties
indi <- ind[diag(object$S[[i]])!=0] ## index of penalized cols
pen.ind[indi] <- i
X <- object$X[,indi,drop=FALSE] ## model matrix for this component
D <- diag(object$S[[i]])[indi]
diagU[indi] <- 1/sqrt(D) ## transform that reduces penalty to identity
X <- X%*%diag(diagU[indi])
fixed[indi] <- FALSE
term.name <- new.name("Xr",vnames)
group.name <- new.name("g",vnames)
vnames <- c(vnames,term.name,group.name)
if (type==1) { ## gamm form for lme
## env set to avoid 'save' saving whole environment to file...
form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
random[[i]] <- pdIdnot(form)
names(random)[i] <- group.name
attr(random[[i]],"group") <- factor(rep(1,nrow(X)))
attr(random[[i]],"Xr.name") <- term.name
attr(random[[i]],"Xr") <- X
} else { ## lmer form as used by gamm4
random[[i]] <- X
names(random)[i] <- term.name
attr(random[[i]],"s.label") <- object$label
}
n.para <- n.para + ncol(X)
}
if (sum(fixed)) { ## then there are fixed effects!
Xf <- object$X[,fixed,drop=FALSE]
} else Xf <- matrix(0,nrow(object$X),0)
list(rand=random,trans.D=diagU,Xf=Xf,fixed=FALSE,
rind=1:n.para,rinc=rep(n.para,n.para),pen.ind=pen.ind)
} ## smooth2random.t2.smooth
smooth2random.mgcv.smooth <- function(object,vnames,type=1) {
## takes a smooth object and turns it into a form suitable for estimation as a random effect
## vnames is a list of names to avoid when assigning variable names.
## type==1 indicates an lme random effect.
## Returns 1. a list of random effects, including grouping factors, and
## a fixed effects matrix. Grouping factors, model matrix and
## model matrix name attached as attributes, to each element.
## 2. rind: an index vector such that if br is the vector of
## random coefficients for the term, br[rind] is the coefs in
## order for this term. rinc - dummy here.
## 3. A matrix, U, + vec D that transforms coefs, in order [rand1, rand2,... fix]
## back to original parameterization. b_origonal = U%*%(D*b_fit)
## 4. A matrix Xf for the fixed effects, if any.
## 5. fixed TRUE/FALSE if its fixed or not. If fixed the other stuff is
## not returned.
## This version deals only with single penalty smooths conditioned on a whole
## dataset dummy factor.
## object must contain model matrix for smooth.
if (object$fixed) return(list(fixed=TRUE,Xf=object$X))
if (length(object$S)>1) stop("Can not convert this smooth class to a random effect")
## reparameterize so that unpenalized basis is separated out and at end...
ev <- eigen(object$S[[1]],symmetric=TRUE)
## following is a hack for developers calling smooth2random for fit and then again
## for prediction, rather than as intended (do this on different machines and...)
if (ev$vectors[1,1]<0) ev$vectors <- -ev$vectors
null.rank <- object$df - object$rank
p.rank <- object$rank
if (p.rank>ncol(object$X)) p.rank <- ncol(object$X)
U <- ev$vectors
D <- c(ev$values[1:p.rank],rep(1,null.rank))
D <- 1/sqrt(D)
UD <- t(t(U)*D) ## U%*%[b,beta] returns coefs in original parameterization
X <- object$X%*%UD
if (p.rank<object$df) Xf <- X[,(p.rank+1):object$df,drop=FALSE] else
Xf <- matrix(0,nrow(object$X),0) # no fixed terms left
term.name <- new.name("Xr",vnames)
if (type==1) { ## gamm form for lme
## env set to avoid 'save' saving whole environment with fitted model object
form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
random <- list(pdIdnot(form))
group.name <- new.name("g",vnames)
names(random) <- group.name
attr(random[[1]],"group") <- factor(rep(1,nrow(X)))
attr(random[[1]],"Xr.name") <- term.name
attr(random[[1]],"Xr") <- X[,1:p.rank,drop=FALSE]
} else { ## lmer form as used in gamm4
random <- list(X[,1:p.rank,drop=FALSE])
names(random)[1] <- term.name
attr(random[[1]],"s.label") <- object$label
}
rind <- 1:p.rank
pen.ind <- rep(0,ncol(object$X))
pen.ind[rind] <- 1
rinc <- rep(p.rank,p.rank)
list(rand=random, ## the random effects for this term
Xf=Xf, ## the fixed effect model matrix for this term
trans.U=U, ## orthog matrix mapping coefs back to original parameterization
trans.D=D, ## back trans vector (b_original = U%*%(D*b_fit))
fixed=FALSE,rind=rind,rinc=rinc,
pen.ind=pen.ind)
} ## end smooth2random.mgcv.smooth
smooth2random.tensor.smooth <- function(object,vnames,type=1) {
## takes a smooth object and turns it into a form suitable for estimation as a random effect
## vnames is a list of names to avoid when assigning variable names.
## type==1 indicates an lme random effect.
## Returns 1. a list of random effects, including grouping factors, and
## a fixed effects matrix. Grouping factors, model matrix and
## model matrix name attached as attributes, to each element.
## 2. rind: an index vector such that if br is the vector of
## random coefficients for the term, br[rind] is the coefs in
## order for this term. rinc - dummy here.
## 3. A matrix, U, that transforms coefs, in order [rand1, rand2,... fix]
## back to original parameterization. If null, then not needed.
## 4. A matrix Xf for the fixed effects, if any.
## 5. fixed TRUE/FALSE if its fixed or not. If fixed the other stuff is
## not returned.
## This version deals only with te smooths conditioned on a whole
## dataset dummy factor.
## object must contain model matrix for smooth.
if (type==2) stop("te smooths not useable with gamm4: use t2 instead")
if (sum(object$fx)==length(object$fx)) return(list(fixed=TRUE,Xf=object$X)) else
if (sum(object$fx)!=0) warning("gamm can not fix only some margins of tensor product.")
## first sort out the re-parameterization...
sum.S <- object$S[[1]]/mean(abs(object$S[[1]]))
#null.rank <- ncol(object$margin[[1]]$X)-object$margin[[1]]$rank ## null space rank
# bs.dim <- ncol(object$margin[[1]]$X)
if (length(object$S)>1) for (l in 2:length(object$S)) {
sum.S <- sum.S + object$S[[l]]/mean(abs(object$S[[l]]))
#dfl <- ncol(object$margin[[l]]$X) ## actual df of term (`df' may not be set by constructor)
#null.rank <- null.rank * (dfl-object$margin[[l]]$rank)
#bs.dim <- bs.dim * dfl
}
null.rank <- object$null.space.dim
#null.rank <- null.rank - bs.dim + object$df
##sum.S <- (sum.S+t(sum.S))/2 # ensure symmetry
ev <- eigen(sum.S,symmetric=TRUE)
## following is a hack for developers calling smooth2random for fit and then again
## for prediction, rather than as intended...
if (ev$vectors[1,1]<0) ev$vectors <- -ev$vectors
p.rank <- ncol(object$X) - null.rank
if (p.rank>ncol(object$X)) p.rank <- ncol(object$X)
U <- ev$vectors
D <- c(ev$values[1:p.rank],rep(1,null.rank))
if (sum(D<=0)) stop(
"Tensor product penalty rank appears to be too low: please email Simon.Wood@R-project.org with details.")
## D <- 1/sqrt(D)
U <- U ## maps coefs back to untransformed versions
X <- object$X%*%U
if (p.rank<ncol(X)) Xf <- X[,(p.rank+1):ncol(X),drop=FALSE] else
Xf <- matrix(0,nrow(X),0) # no fixed terms left
for (l in 1:length(object$S)) { # transform penalty explicitly
object$S[[l]] <- (t(U)%*%object$S[[l]]%*%U)[1:p.rank,1:p.rank]
object$S[[l]] <- (object$S[[l]]+t(object$S[[l]]))/2
}
term.name <- new.name("Xr",vnames)
form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv)
attr(form,"S") <- object$S ## this class needs penalty matrices to be supplied
random <- list(pdTens(form)) ## lme random effect class
group.name <- new.name("g",vnames)
names(random) <- group.name ## grouping factor name
attr(random[[1]],"group") <- factor(rep(1,nrow(X))) ## grouping factor
attr(random[[1]],"Xr.name") <- term.name ## random effect matrix name
attr(random[[1]],"Xr") <- X[,1:p.rank,drop=FALSE] ## random effect model matrix
rind <- 1:p.rank
rinc <- rep(p.rank,p.rank)
list(rand=random, ## the random effects for this term
Xf=Xf, ## the fixed effect model matrix for this term
trans.U=U, ## the matrix mapping coefs back to original parameterization
trans.D=rep(1,ncol(U)),
fixed=FALSE,rind=rind,rinc=rinc)
} ## end smooth2random.tensor.smooth
gamm.setup <- function(formula,pterms,
data=stop("No data supplied to gamm.setup"),knots=NULL,
parametric.only=FALSE,absorb.cons=FALSE)
## set up the model matrix, penalty matrices and auxilliary information about the smoothing bases
## needed for a gamm fit.
## NOTE: lme can't deal with offset terms.
## There is an implicit assumption that any rank deficient penalty does not penalize
## the constant term in a basis.
## 1. Calls gam.setup, as for a gam to produce object G suitable for estimating a gam.
## 2. Works through smooth list, G$smooth, modifying so that...
## i) Smooths are reparameterized to have identity, or tensor, penalty matrices,
## and separated fixed and random components with transform information
## stored in the smooth.
## ii) The smooth stores the index range of its coefficients in overall
## fixed and r.e. coef vectors.
## iii) pdIdnot or pdTens terms are stored in a separate `G$random' list, which
## refers, by name, to r.e. model matrices stored directly in G.
## iv) an overall fixed effect matrix X is accumulated.
{
## first simply call `gam.setup'....
G <- gam.setup(formula,pterms,
data=data,knots=knots,sp=NULL,
min.sp=NULL,H=NULL,absorb.cons=TRUE,sparse.cons=0,gamm.call=TRUE)
if (!is.null(G$L)) stop("gamm can not handle linked smoothing parameters (probably from use of `id' or adaptive smooths)")
# now perform re-parameterization...
first.f.para <- G$nsdf+1
first.r.para <- 1
G$Xf <- G$X # full GAM model matrix, treating smooths as fixed effects
random <- list()
if (G$nsdf>0) ind <- 1:G$nsdf else ind <- rep(0,0)
X <- G$X[,ind,drop=FALSE] # accumulate fixed effects into here
xlab <- rep("",0)
## first have to create a processing order, so that any smooths conditional on
## multi-level factors are processed last, and hence end up at the end of the
## random list (right is nested in left in this list!)
if (G$m>0) {
pord <- 1:G$m
done <- rep(FALSE,length(pord))
k <- 0
f.name <- NULL
for (i in 1:G$m) if (is.null(G$smooth[[i]]$fac)) {
k <- k + 1
pord[k] <- i
done[i] <- TRUE
} else {
if (is.null(f.name)) f.name <- G$smooth[[i]]$fterm
else if (f.name!=G$smooth[[i]]$fterm) stop("only one level of smooth nesting is supported by gamm")
if (!is.null(attr(G$smooth[[i]],"del.index"))) stop("side conditions not allowed for nested smooths")
}
if (k < G$m) pord[(k+1):G$m] <- (1:G$m)[!done]
## .... ordered so that nested smooths are last
}
if (G$m) for (i in 1:G$m) { ## work through the smooths
sm <- G$smooth[[pord[i]]]
sm$X <- G$X[,sm$first.para:sm$last.para,drop=FALSE]
rasm <- smooth2random(sm,names(data)) ## convert smooth to random effect and fixed effects
sm$fixed <- rasm$fixed
if (!is.null(sm$fac)) {
flev <- levels(sm$fac) ## grouping factor for smooth
##n.lev <- length(flev)
} ##else n.lev <- 1
## now append constructed variables to model frame and random effects to main list
n.para <- 0 ## count random coefficients
## rinc <- rind <- rep(0,0)
if (!sm$fixed) {
# kk <- 1;
for (k in 1:length(rasm$rand)) {
group.name <- names(rasm$rand)[k]
group <- attr(rasm$rand[[k]],"group")
Xr.name <- attr(rasm$rand[[k]],"Xr.name")
Xr <- attr(rasm$rand[[k]],"Xr")
attr(rasm$rand[[k]],"group") <- attr(rasm$rand[[k]],"Xr") <-
attr(rasm$rand[[k]],"Xr.name") <- NULL
# rind <- c(rind,kk:(kk+ncol(Xr)-1))
# rinc <- c(rinc,rep(ncol(Xr),ncol(Xr))) ## increment for rind
# kk <- kk + n.lev * ncol(Xr)
n.para <- n.para + ncol(Xr)
data[[group.name]] <- group
data[[Xr.name]] <- Xr
}
random <- c(random,rasm$rand)
sm$trans.U <- rasm$trans.U ## matrix mapping fit coefs back to original
sm$trans.D <- rasm$trans.D ## so b_original = U%*%(D*b_fit)
}
if (ncol(rasm$Xf)) { ## lme requires names
Xfnames <- rep("",ncol(rasm$Xf))
k <- length(xlab)+1
for (j in 1:ncol(rasm$Xf)) {
xlab[k] <- Xfnames[j] <-
new.name(paste(sm$label,"Fx",j,sep=""),xlab)
k <- k + 1
}
colnames(rasm$Xf) <- Xfnames
}
X <- cbind(X,rasm$Xf) # add fixed model matrix to overall fixed X
## update the counters indicating which elements of the whole model
## fixed and random coef vectors contain the coefs for this smooth.
## note convention that smooth coefs are [random, fixed]
sm$first.f.para <- first.f.para
first.f.para <- first.f.para + ncol(rasm$Xf)
sm$last.f.para <- first.f.para - 1 ## note less than sm$first.f.para => no fixed
sm$rind <- rasm$rind - 1 + first.r.para
sm$rinc <- rasm$rinc
# sm$first.r.para <- first.r.para
first.r.para <- first.r.para+n.para
# sm$last.r.para <- first.r.para-1
sm$n.para <- n.para
## convention is that random coefs for grouped smooths will be
## packed [coefs for level 1, coefs for level 2, ...]
## n.para is number of random paras at each level.
## so coefs for ith level will be indexed by
## rind + (i-1)*n.para
## first.r.para:last.r.para + (i-1)*n.para
if (!is.null(sm$fac)) { ## there is a grouping factor for this smooth
## have to up this first.r.para to allow a copy of coefs for each level of fac...
first.r.para <- first.r.para + n.para*(length(flev)-1)
}
sm$X <- NULL ## delete model matrix
if (G$m>0) G$smooth[[pord[i]]] <- sm ## replace smooth object with extended version
}
G$random <- random
G$X <- X ## fixed effects model matrix
G$data <- data
if (G$m>0) G$pord <- pord ## gamm needs to run through smooths in same order as here
G
} ## end of gamm.setup
varWeights.dfo <- function(b,data)
## get reciprocal *standard deviations* implied by the estimated variance
## structure of an lme object, b, in *original data frame order*.
{ w <- nlme::varWeights(b$modelStruct$varStruct)
# w is not in data.frame order - it's in inner grouping level order
group.name <- names(b$groups) # b$groups[[i]] doesn't always retain factor ordering
ind <- NULL
order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="")
if (length(b$groups)>1) for (i in 2:length(b$groups))
order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="")
order.txt <- paste(order.txt,")")
eval(parse(text=order.txt))
w[ind] <- w # into data frame order
w
}
extract.lme.cov2<-function(b,data=NULL,start.level=1)
# function to extract the response data covariance matrix from an lme fitted
# model object b, fitted to the data in data. "inner" == "finest" grouping
# start.level is the r.e. grouping level at which to start the construction,
# levels outer to this will not be included in the calculation - this is useful
# for gamm calculations
#
# This version aims to be efficient, by not forming the complete matrix if it
# is diagonal or block diagonal. To this end the matrix is returned in a form
# that relates to the data re-ordered according to the coarsest applicable
# grouping factor. ind[i] gives the row in the original data frame
# corresponding to the ith row/column of V.
# V is either returned as an array, if it's diagonal, a matrix if it is
# a full matrix or a list of matrices if it is block diagonal.
{ if (!inherits(b,"lme")) stop("object does not appear to be of class lme")
if (is.null(data)) {
na.act <- na.action(b)
data <- if (is.null(na.act)) b$data else b$data[-na.act,]
}
grps <- nlme::getGroups(b) # labels of the innermost groupings - in data frame order
n <- length(grps) # number of data
n.levels <- length(b$groups) # number of nested grouping factors (random effects only)
# if (n.levels<start.level) { ## then examine correlation groups
n.corlevels <- if (is.null(b$modelStruct$corStruct)) 0 else
length(all.vars(nlme::getGroupsFormula(b$modelStruct$corStruct)))
# } else n.corlevels <- 0 ## used only to signal irrelevance
## so at this stage n.corlevels > 0 iff it determines the coarsest grouping
## level if > start.level.
if (n.levels<n.corlevels) { ## then cor groups are finest
## correlation groups are awkward. The groups returned by
## getGroups(b$modelStruct$corStruct) are not in data frame
## order, but in a sorted order. This is odd because if you
## take the original uninitialized corStruct and Initialize
## using what is stored in b$data, and then apply getGroups,
## the groups are in data frame order (suggesting one route
## for getting the groups into data frame order). The approach
## taken here simply re-constructs the groups in data frame
## order, thereby avoiding the need to store the uninitialized
## corStruct. Note that covariates of corStructs do not
## cause re-ordering: only grouping variables do that.
## The above has been tested at nlme_3.1-109
## grps <- nlme::getGroups(b$modelStruct$corStruct) # replace grps (but not n.levels)
getGroupsFormula(b$modelStruct$corStruct)
vnames <- all.vars(nlme::getGroupsFormula(b$modelStruct$corStruct))
## attr(b$modelStruct$corStruct,"formula") # would include covariates
lab <- paste(eval(parse(text=vnames[1]),envir=b$data))
if (length(vnames)>1) for (i in 2:length(vnames)) {
lab <- paste(lab,"/",eval(parse(text=vnames[i]),envir=b$data),sep="")
}
grps <- factor(lab)
}
if (n.levels >= start.level||n.corlevels >= start.level) {
if (n.levels >= start.level)
Cgrps <- nlme::getGroups(b,level=start.level) # outer grouping labels (dforder)
else Cgrps <- grps
#Cgrps <- nlme::getGroups(b$modelStruct$corStruct) # ditto
Cind <- sort(as.numeric(Cgrps),index.return=TRUE)$ix
# Cind[i] is where row i of sorted Cgrps is in original data frame order
rCind <- 1:n; rCind[Cind] <- 1:n
# rCind[i] is location of ith original datum in the coarse ordering
## CFgrps <- grps[Cind] # fine group levels in coarse group order (unused!!)
Clevel <- levels(Cgrps) # levels of coarse grouping factor
n.cg <- length(Clevel) # number of outer groups
size.cg <- array(0,n.cg)
for (i in 1:n.cg) size.cg[i] <- sum(Cgrps==Clevel[i]) # size of each coarse group
## Cgrps[Cind] is sorted by coarsest grouping factor level
## so e.g. y[Cind] would be data in c.g.f. order
} else { n.cg <- 1; Cind<-1:n }
if (is.null(b$modelStruct$varStruct)) w<-rep(b$sigma,n) ###
else {
w <- 1/nlme::varWeights(b$modelStruct$varStruct)
# w is not in data.frame order - it's in inner grouping level order
group.name<-names(b$groups) # b$groups[[i]] doesn't always retain factor ordering
order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="")
if (length(b$groups)>1) for (i in 2:length(b$groups))
order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="")
order.txt <- paste(order.txt,")")
eval(parse(text=order.txt))
w[ind] <- w # into data frame order
w <- w*b$sigma
}
w <- w[Cind] # re-order in coarse group order
if (is.null(b$modelStruct$corStruct)) V <- array(1,n)
else {
c.m <- nlme::corMatrix(b$modelStruct$corStruct) # correlation matrices for each innermost group
if (!is.list(c.m)) { # copy and re-order into coarse group order
V <- c.m;V[Cind,] -> V;V[,Cind] -> V
} else {
V<-list() # V[[i]] is cor matrix for ith coarse group
ind <- list() # ind[[i]] is order index for V[[i]]
for (i in 1:n.cg) {
V[[i]] <- matrix(0,size.cg[i],size.cg[i])
ind[[i]] <- 1:size.cg[i]
}
# Voff[i] is where, in coarse order data, first element of V[[i]]
# relates to ...
Voff <- cumsum(c(1,size.cg))
gr.name <- names(c.m) # the names of the innermost groups
n.g<-length(c.m) # number of innermost groups
j0<-rep(1,n.cg) # place holders in V[[i]]'s
ii <- 1:n
for (i in 1:n.g) # work through innermost groups
{ # first identify coarse grouping
Clev <- unique(Cgrps[grps==gr.name[i]]) # level for coarse grouping factor
if (length(Clev)>1) stop("inner groupings not nested in outer!!")
k <- (1:n.cg)[Clevel==Clev] # index of coarse group - i.e. update V[[k]]
# now need to get c.m into right place within V[[k]]
j1<-j0[k]+nrow(c.m[[i]])-1
V[[k]][j0[k]:j1,j0[k]:j1]<-c.m[[i]]
ind1 <- ii[grps==gr.name[i]]
# ind1 is the rows of original data.frame to which c.m[[i]] applies
# assuming that data frame order is preserved at the inner grouping
ind2 <- rCind[ind1]
# ind2 contains the rows of the coarse ordering to which c.m[[i]] applies
ind[[k]][j0[k]:j1] <- ind2 - Voff[k] + 1
# ind[k] accumulates rows within coarse group k to which V[[k]] applies
j0[k]<-j1+1
}
for (k in 1:n.cg) { # pasting correlations into right place in each matrix
V[[k]][ind[[k]],]<-V[[k]];V[[k]][,ind[[k]]]<-V[[k]]
}
}
}
# now form diag(w)%*%V%*%diag(w), depending on class of V
if (is.list(V)) # it's a block diagonal structure
{ for (i in 1:n.cg)
{ wi <- w[Voff[i]:(Voff[i]+size.cg[i]-1)]
V[[i]] <- as.vector(wi)*t(as.vector(wi)*V[[i]])
}
} else
if (is.matrix(V))
{ V <- as.vector(w)*t(as.vector(w)*V)
} else # it's a diagonal matrix
{ V <- w^2*V
}
# ... covariance matrix according to fitted correlation structure in coarse
# group order
## Now work on the random effects .....
X <- list()
grp.dims <- b$dims$ncol # number of Zt columns for each grouping level (inner levels first)
# inner levels are first in Zt
Zt <- model.matrix(b$modelStruct$reStruct,data) # a sort of proto - Z matrix
# b$groups and cov (defined below have the inner levels last)
cov <- as.matrix(b$modelStruct$reStruct) # list of estimated covariance matrices (inner level last)
i.col<-1
Z <- matrix(0,n,0) # Z matrix
if (start.level<=n.levels)
{ for (i in 1:(n.levels-start.level+1)) # work through the r.e. groupings inner to outer
{ # get matrix with columns that are indicator variables for ith set of groups...
# groups has outer levels first
if(length(levels(b$groups[[n.levels-i+1]]))==1) { ## model.matrix needs >1 level
X[[1]] <- matrix(rep(1,nrow(b$groups))) } else {
clist <- list('b$groups[[n.levels - i + 1]]'=c("contr.treatment","contr.treatment"))
X[[1]] <- model.matrix(~b$groups[[n.levels - i + 1]]-1,
contrasts.arg=clist) }
# Get `model matrix' columns relevant to current grouping level...
X[[2]] <- Zt[,i.col:(i.col+grp.dims[i]-1),drop=FALSE]
i.col <- i.col+grp.dims[i]
# tensor product the X[[1]] and X[[2]] rows...
Z <- cbind(Z,tensor.prod.model.matrix(X))
} # so Z assembled from inner to outer levels
# Now construct overall ranef covariance matrix
Vr <- matrix(0,ncol(Z),ncol(Z))
start <- 1
for (i in 1:(n.levels-start.level+1))
{ k <- n.levels-i+1
for (j in 1:b$dims$ngrps[i])
{ stop <- start+ncol(cov[[k]])-1
Vr[start:stop,start:stop]<-cov[[k]]
start <- stop+1
}
}
Vr <- Vr*b$sigma^2
## Now re-order Z into coarse group order
Z <- Z[Cind,]
## Now Z %*% Vr %*% t(Z) is block diagonal: if Z' = [Z1':Z2':Z3': ... ]
## where Zi contains th rows of Z for the ith level of the coarsest
## grouping factor, then the ith block of (Z Vr Z') is (Zi Vr Zi')
if (n.cg == 1) {
if (is.matrix(V)) {
V <- V+Z%*%Vr%*%t(Z)
} else V <- diag(V) + Z%*%Vr%*%t(Z)
} else { # V has a block - diagonal structure
j0 <- 1
Vz <- list()
for (i in 1:n.cg) {
j1 <- size.cg[i] + j0 -1
Zi <- Z[j0:j1,,drop=FALSE]
Vz[[i]] <- Zi %*% Vr %*% t(Zi)
j0 <- j1+1
}
if (is.list(V)) {
for (i in 1:n.cg) V[[i]] <- V[[i]]+Vz[[i]]
} else {
j0 <-1
for (i in 1:n.cg) {
kk <- size.cg[i]
j1 <- kk + j0 -1
Vz[[i]] <- Vz[[i]] + diag(x=V[j0:j1],nrow=kk,ncol=kk)
j0 <- j1+1
}
V <- Vz
}
}
}
list(V=V,ind=Cind)
} ## extract.lme.cov2
extract.lme.cov<-function(b,data=NULL,start.level=1)
# function to extract the response data covariance matrix from an lme fitted
# model object b, fitted to the data in data. "inner" == "finest" grouping
# start.level is the r.e. grouping level at which to start the construction,
# levels outer to this will not be included in the calculation - this is useful
# for gamm calculations
{ if (!inherits(b,"lme")) stop("object does not appear to be of class lme")
if (is.null(data)) {
na.act <- na.action(b)
data <- if (is.null(na.act)) b$data else b$data[-na.act,]
}
grps<-nlme::getGroups(b) # labels of the innermost groupings - in data frame order
n<-length(grps) # number of data
if (is.null(b$modelStruct$varStruct)) w<-rep(b$sigma,n) ###
else
{ w<-1/nlme::varWeights(b$modelStruct$varStruct)
# w is not in data.frame order - it's in inner grouping level order
group.name<-names(b$groups) # b$groups[[i]] doesn't always retain factor ordering
order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="")
if (length(b$groups)>1) for (i in 2:length(b$groups))
order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="")
order.txt <- paste(order.txt,")")
eval(parse(text=order.txt))
w[ind] <- w # into data frame order
w<-w*b$sigma
}
if (is.null(b$modelStruct$corStruct)) V<-diag(n) #*b$sigma^2
else
{ c.m<-nlme::corMatrix(b$modelStruct$corStruct) # correlation matrices for each group
if (!is.list(c.m)) V<-c.m
else
{ V<-matrix(0,n,n) # data cor matrix
gr.name <- names(c.m) # the names of the groups
n.g<-length(c.m) # number of innermost groups
j0<-1
ind<-ii<-1:n
for (i in 1:n.g)
{ j1<-j0+nrow(c.m[[i]])-1
V[j0:j1,j0:j1]<-c.m[[i]]
ind[j0:j1]<-ii[grps==gr.name[i]]
j0<-j1+1
}
V[ind,]<-V;V[,ind]<-V # pasting correlations into right place in overall matrix
# V<-V*b$sigma^2
}
}
V <- as.vector(w)*t(as.vector(w)*V) # diag(w)%*%V%*%diag(w)
# ... covariance matrix according to fitted correlation structure
X<-list()
grp.dims<-b$dims$ncol # number of Zt columns for each grouping level (inner levels first)
# inner levels are first in Zt
Zt<-model.matrix(b$modelStruct$reStruct,data) # a sort of proto - Z matrix
# b$groups and cov (defined below have the inner levels last)
cov<-as.matrix(b$modelStruct$reStruct) # list of estimated covariance matrices (inner level last)
i.col<-1
n.levels<-length(b$groups)
Z<-matrix(0,n,0) # Z matrix
if (start.level<=n.levels)
{ for (i in 1:(n.levels-start.level+1)) # work through the r.e. groupings inner to outer
{ # get matrix with columns that are indicator variables for ith set of groups...
# groups has outer levels first
if(length(levels(b$groups[[n.levels-i+1]]))==1) { ## model.matrix needs >1 level
X[[1]] <- matrix(rep(1,nrow(b$groups))) } else {
clist <- list('b$groups[[n.levels - i + 1]]'=c("contr.treatment","contr.treatment"))
X[[1]] <- model.matrix(~b$groups[[n.levels - i + 1]]-1,
contrasts.arg=clist) }
# Get `model matrix' columns relevant to current grouping level...
X[[2]] <- Zt[,i.col:(i.col+grp.dims[i]-1),drop=FALSE]
i.col <- i.col+grp.dims[i]
# tensor product the X[[1]] and X[[2]] rows...
Z <- cbind(Z,tensor.prod.model.matrix(X))
} # so Z assembled from inner to outer levels
# Now construct overall ranef covariance matrix
Vr <- matrix(0,ncol(Z),ncol(Z))
start <- 1
for (i in 1:(n.levels-start.level+1))
{ k <- n.levels-i+1
for (j in 1:b$dims$ngrps[i])
{ stop <- start+ncol(cov[[k]])-1
Vr[start:stop,start:stop]<-cov[[k]]
start <- stop+1
}
}
Vr <- Vr*b$sigma^2
V <- V+Z%*%Vr%*%t(Z)
}
V
} ## extract.lme.cov
formXtViX <- function(V,X)
## forms X'V^{-1}X as efficiently as possible given the structure of
## V (diagonal, block-diagonal, full)
## Actually returns R where R'R = X'V^{-1}X
{ X <- X[V$ind,,drop=FALSE] # have to re-order X according to V ordering
if (is.list(V$V)) { ### block diagonal case
Z <- X
j0 <- 1
for (i in 1:length(V$V))
{ Cv <- chol(V$V[[i]])
j1 <- j0+nrow(V$V[[i]])-1
Z[j0:j1,] <- backsolve(Cv,X[j0:j1,,drop=FALSE],transpose=TRUE)
j0 <- j1 + 1
}
#res <- t(Z)%*%Z
} else if (is.matrix(V$V)) { ### full matrix case
Cv <- chol(V$V)
Z <- backsolve(Cv,X,transpose=TRUE)
#res <- t(Z)%*%Z
} else { ### diagonal matrix case
Z <- X/sqrt(as.numeric(V$V))
#res <- t(X)%*%(X/as.numeric(V$V))
}
qrz <- qr(Z,LAPACK=TRUE)
R <- qr.R(qrz);R[,qrz$pivot] <- R
colnames(R) <- colnames(X)
#res <- crossprod(R)
#res
R
}
new.name <- function(proposed,old.names)
# finds a name based on proposed, that is not in old.names
# if the proposed name is in old.names then ".xx" is added to it
# where xx is a number chosen to ensure the a unique name
{ prop <- proposed
k <- 0
while (sum(old.names==prop))
{ prop<-paste(proposed,".",k,sep="")
k <- k + 1
}
prop
}
gammPQL <- function (fixed, random, family, data, correlation, weights,
control, niter = 30, verbose = TRUE, mustart=NULL, etastart=NULL, ...) {
## service routine for `gamm' to do PQL fitting. Based on glmmPQL
## from the MASS library (Venables & Ripley). Because `gamm' already
## does some of the preliminary stuff that glmmPQL does, gammPQL can
## be simpler. It also deals with the possibility of the original
## data frame containing variables called `zz' `wts' or `invwt'.
## Modified 2019 to use standard GLM initialization to improve convergence.
## Old glmmPQL style initialization commented out (single # first col) for
## eventual removal.
off <- model.offset(data)
if (is.null(off)) off <- 0
y <- model.response(data)
nobs <- nrow(data)
if (is.null(weights)) weights <- rep(1, nrow(data))
start <- NULL ## never used
if (is.null(mustart)) {
eval(family$initialize)
} else {
mukeep <- mustart
eval(family$initialize)
mustart <- mukeep
}
#eval(family$initialize) ## NEW
wts <- weights
# if (is.null(wts)) wts <- rep(1, nrow(data))
wts.name <- new.name("wts",names(data)) ## avoid overwriting what's already in `data'
data[[wts.name]] <- wts
# fit0 <- NULL ## keep checking tools happy
## initial fit (might be better replaced with `gam' call)
# eval(parse(text=paste("fit0 <- glm(formula = fixed, family = family, data = data,",
# "weights =",wts.name,",...)")))
# w <- fit0$prior.weights
# eta <- fit0$linear.predictors
fam <- family
eta <- if (!is.null(etastart))
etastart
else fam$linkfun(mustart)
mu <- fam$linkinv(eta)
w <- wts;
# zz <- eta + fit0$residuals - off
mu.eta.val <- fam$mu.eta(eta)
zz <- eta + (y - mu)/mu.eta.val - off
# wz <- fit0$weights
wz <- w * mu.eta.val^2/fam$variance(mustart)
## find non clashing name for pseudodata and insert in formula
zz.name <- new.name("zz",names(data))
eval(parse(text=paste("fixed[[2]] <- quote(",zz.name,")")))
data[[zz.name]] <- zz ## pseudodata to `data'
## find non-clashing name for inverse weights, and make
## varFixed formula using it...
invwt.name <- new.name("invwt",names(data))
data[[invwt.name]] <- 1/wz
w.formula <- as.formula(paste("~",invwt.name,sep=""))
converged <- FALSE
if (family$family %in% c("poisson","binomial")) {
control$sigma <- 1 ## set scale parameter to 1
control$apVar <- FALSE ## not available
}
for (i in 1:niter) {
if (verbose) message(gettextf("iteration %d", i))
fit <- lme(fixed=fixed,random=random,data=data,correlation=correlation,
control=control,weights=varFixed(w.formula),method="ML",...)
etaold <- eta
eta <- fitted(fit) + off
if (sum((eta - etaold)^2) < 1e-06 * sum(eta^2)) {
converged <- TRUE
break
}
mu <- fam$linkinv(eta)
mu.eta.val <- fam$mu.eta(eta)
## get pseudodata and insert in `data'
# data[[zz.name]] <- eta + (fit0$y - mu)/mu.eta.val - off
data[[zz.name]] <- eta + (y - mu)/mu.eta.val - off
wz <- w * mu.eta.val^2/fam$variance(mu)
data[[invwt.name]] <- 1/wz
} ## end i in 1:niter
if (!converged) warning("gamm not converged, try increasing niterPQL")
# fit$y <- fit0$y
fit$y <- y
fit$w <- w ## prior weights
fit
} ## gammPQL
gamm <- function(formula,random=NULL,correlation=NULL,family=gaussian(),data=list(),weights=NULL,
subset=NULL,na.action,knots=NULL,control=list(niterEM=0,optimMethod="L-BFGS-B",returnObject=TRUE),
niterPQL=20,verbosePQL=TRUE,method="ML",drop.unused.levels=TRUE,mustart=NULL, etastart=NULL,...)
# Routine to fit a GAMM to some data. Fixed and smooth terms are defined in the formula, but the wiggly
# parts of the smooth terms are treated as random effects. The onesided formula random defines additional
# random terms. correlation describes the correlation structure. This routine is basically an interface
# between the basis constructors provided in mgcv and the gammPQL routine used to estimate the model.
{ if (inherits(family,"extended.family")) warning("family are not designed for use with gamm!")
## lmeControl turns sigma=NULL into sigma=0, but if you supply sigma=0 rejects it,
## which will break the standard handling of the control list. Following line fixes.
## but actually Martin M has now fixed lmeControl...
##if (!is.null(control$sigma)&&control$sigma==0) control$sigma <- NULL
if (inherits(family,"extended.family")) warning("gamm is not designed to use extended families")
control <- do.call("lmeControl",control)
# check that random is a named list
if (!is.null(random))
{ if (is.list(random))
{ r.names<-names(random)
if (is.null(r.names)) stop("random argument must be a *named* list.")
else if (sum(r.names=="")) stop("all elements of random list must be named")
}
else stop("gamm() can only handle random effects defined as named lists")
random.vars<-c(unlist(lapply(random, function(x) all.vars(formula(x)))),r.names)
} else random.vars<-NULL
if (!is.null(correlation)) {
cor.for<-attr(correlation,"formula")
if (!is.null(cor.for)) cor.vars<-all.vars(cor.for)
} else cor.vars<-NULL
## now establish whether weights is varFunc or not...
wisvf <- try(inherits(weights,"varFunc"),silent=TRUE)
if (inherits(wisvf,"try-error")) wisvf <- FALSE
if (wisvf) { ## collect its variables
if (inherits(weights,"varComb")) { ## actually a list of varFuncs
vf.vars <- rep("",0)
for (i in 1:length(weights)) {
vf.vars <- c(vf.vars,all.vars(attr(weights[[i]],"formula")))
}
vf.vars <- unique(vf.vars)
} else { ## single varFunc
vf.for<-attr(weights,"formula")
if (!is.null(vf.for)) vf.vars<-all.vars(vf.for)
}
} else vf.vars <- NULL
# create model frame.....
gp <- interpret.gam(formula) # interpret the formula
##cl<-match.call() # call needed in gamm object for update to work
mf <- match.call(expand.dots=FALSE)
mf$formula <- gp$fake.formula
if (wisvf) {
mf$correlation <- mf$random <- mf$family <- mf$control <- mf$scale <- mf$knots <- mf$sp <- mf$weights <-
mf$min.sp <- mf$H <- mf$gamma <- mf$fit <- mf$niterPQL <- mf$verbosePQL <- mf$G <- mf$method <- mf$... <- NULL
} else {
mf$correlation <- mf$random <- mf$family <- mf$control <- mf$scale <- mf$knots <- mf$sp <-
mf$min.sp <- mf$H <- mf$gamma <- mf$fit <- mf$niterPQL <- mf$verbosePQL <- mf$G <- mf$method <- mf$... <- NULL
}
mf$drop.unused.levels <- drop.unused.levels
mf[[1]] <- quote(stats::model.frame) ## as.name("model.frame")
pmf <- mf
gmf <- eval(mf, parent.frame()) # the model frame now contains all the data, for the gam part only
gam.terms <- attr(gmf,"terms") # terms object for `gam' part of fit -- need this for prediction to work properly
if (!wisvf) weights <- gmf[["(weights)"]]
allvars <- c(cor.vars,random.vars,vf.vars)
if (length(allvars)) {
mf$formula <- as.formula(paste(paste(deparse(gp$fake.formula,backtick=TRUE),collapse=""),
"+",paste(allvars,collapse="+")))
mf <- eval(mf, parent.frame()) # the model frame now contains *all* the data
}
else mf <- gmf
rm(gmf)
if (nrow(mf)<2) stop("Not enough (non-NA) data to do anything meaningful")
##Terms <- attr(mf,"terms")
## summarize the *raw* input variables
## note can't use get_all_vars here -- buggy with matrices
vars <- all_vars1(gp$fake.formula[-2]) ## drop response here
inp <- parse(text = paste("list(", paste(vars, collapse = ","),")"))
dl <- eval(inp, data, parent.frame())
names(dl) <- vars ## list of all variables needed
var.summary <- variable.summary(gp$pf,dl,nrow(mf)) ## summarize the input data
rm(dl) ## save space
pmf$formula <- gp$pf
pmf <- eval(pmf, parent.frame()) # pmf contains all data for parametric part
pTerms <- attr(pmf,"terms")
if (is.character(family)) family<-eval(parse(text=family))
if (is.function(family)) family <- family()
if (is.null(family$family)) stop("family not recognized")
# now call gamm.setup
G <- gamm.setup(gp,pterms=pTerms,
data=mf,knots=knots,parametric.only=FALSE,absorb.cons=TRUE)
#G$pterms <- pTerms
G$var.summary <- var.summary
mf <- G$data
n.sr <- length(G$random) # number of random smooths (i.e. s(...,fx=FALSE,...) terms)
if (is.null(random)&&n.sr==0)
stop("gamm models must have at least 1 smooth with unknown smoothing parameter or at least one other random effect")
offset.name <- attr(mf,"names")[attr(attr(mf,"terms"),"offset")]
yname <- new.name("y",names(mf))
eval(parse(text=paste("mf$",yname,"<-G$y",sep="")))
Xname <- new.name("X",names(mf))
eval(parse(text=paste("mf$",Xname,"<-G$X",sep="")))
fixed.formula <- paste(yname,"~",Xname,"-1")
## following appears to serve no purpose except confusing later lme versions
#if (length(offset.name)) {
# fixed.formula <- paste(fixed.formula,"+",offset.name)
#}
fixed.formula <- as.formula(fixed.formula)
## Add any explicit random effects to the smooth induced r.e.s
rand <- G$random
if (!is.null(random))
{ r.m <- length(random)
r.names <- c(names(rand),names(random))
for (i in 1:r.m) rand[[n.sr+i]]<-random[[i]]
names(rand) <- r.names
}
## need to modify the correlation structure formula, in order that any
## grouping factors for correlation get nested within at least the
## constructed dummy grouping factors.
if (length(formula(correlation))) # then modify the correlation formula
{ # first get the existing grouping structure ....
corGroup <- paste(names(rand),collapse="/")
groupForm<-nlme::getGroupsFormula(correlation)
if (!is.null(groupForm)) {
groupFormNames <- all.vars(groupForm)
exind <- groupFormNames %in% names(rand)
groupFormNames <- groupFormNames[!exind] ## dumping duplicates
if (length(groupFormNames)) corGroup <-
paste(corGroup,paste(groupFormNames,collapse="/"),sep="/")
}
# now make a new formula for the correlation structure including these groups
corForm <- as.formula(paste(deparse(nlme::getCovariateFormula(correlation)),"|",corGroup))
attr(correlation,"formula") <- corForm
}
### Actually do fitting ....
ret <- list()
if (family$family=="gaussian"&&family$link=="identity"&&
length(offset.name)==0) lme.used <- TRUE else lme.used <- FALSE
if (lme.used&&!is.null(weights)&&!wisvf) lme.used <- FALSE
if (lme.used) { ## following construction is a work-around for problem in nlme 3-1.52
eval(parse(text=paste("ret$lme<-lme(",deparse(fixed.formula),
",random=rand,data=strip.offset(mf),correlation=correlation,",
"control=control,weights=weights,method=method)"
,sep="" )))
## need to be able to work out full edf for following to work...
# if (is.null(correlation)) { ## compute conditional aic precursor
# dev <- sum(family$dev.resids(G$y,fitted(ret$lme),weights))
# ret$lme$aic <- family$aic(G$y,1,fitted(ret$lme),weights,dev)
# }
##ret$lme<-lme(fixed.formula,random=rand,data=mf,correlation=correlation,control=control)
} else { ## Again, construction is a work around for nlme 3-1.52
if (wisvf) stop("weights must be like glm weights for generalized case")
if (verbosePQL) cat("\n Maximum number of PQL iterations: ",niterPQL,"\n")
eval(parse(text=paste("ret$lme<-gammPQL(",deparse(fixed.formula),
",random=rand,data=strip.offset(mf),family=family,",
"correlation=correlation,control=control,",
"weights=weights,niter=niterPQL,verbose=verbosePQL,mustart=mustart,etastart=etastart,...)",sep="")))
G$y <- ret$lme$y ## makes sure that binomial response is returned as a vector!
}
### .... fitting finished
# now fake a gam object
object <- list(model=mf,formula=formula,smooth=G$smooth,nsdf=G$nsdf,family=family,
df.null=nrow(G$X),y=G$y,terms=gam.terms,pterms=G$pterms,xlevels=G$xlevels,
contrasts=G$contrasts,assign=G$assign,na.action=attr(mf,"na.action"),
cmX=G$cmX,var.summary=G$var.summary,scale.estimated=TRUE)
pvars <- all.vars(delete.response(object$terms))
object$pred.formula <- if (length(pvars)>0) reformulate(pvars) else NULL
#######################################################
## Transform parameters back to the original space....
#######################################################
bf <- as.numeric(ret$lme$coefficients$fixed)
# br <- as.numeric(unlist(ret$lme$coefficients$random))
## Grouped random coefs are returned in matrices. Each row relates to one
## level of the grouping factor. So to get coefs in order, with all coefs
## for each grouping factor level contiguous, requires the following...
br <- as.numeric(unlist(lapply(ret$lme$coefficients$random,t)))
fs.present <- FALSE
if (G$nsdf) p <- bf[1:G$nsdf] else p <- array(0,0)
if (G$m>0) for (i in 1:G$m)
{ fx <- G$smooth[[i]]$fixed
first <- G$smooth[[i]]$first.f.para;last <- G$smooth[[i]]$last.f.para
if (first <=last) beta <- bf[first:last] else beta <- array(0,0) ## fixed coefs
if (fx) p <- c(p, beta) else { ## not fixed so need to undo transform of random effects etc.
ind <- G$smooth[[i]]$rind ##G$smooth[[i]]$first.r.para:G$smooth[[i]]$last.r.para
if (!is.null(G$smooth[[i]]$fac)) { ## nested term, need to unpack coefs at each level of fac
fs.present <- TRUE
if (first<=last) stop("Nested smooths must be fully random")
flev <- levels(G$smooth[[i]]$fac)
for (j in 1:length(flev)) {
b <- br[ind]
b <- G$smooth[[i]]$trans.D*b
if (!is.null(G$smooth[[i]]$trans.U)) b <- G$smooth[[i]]$trans.U%*%b
ind <- ind + G$smooth[[i]]$rinc
p <- c(p,b)
}
} else { ## single level
b <- c(br[ind],beta)
b <- G$smooth[[i]]$trans.D*b
if (!is.null(G$smooth[[i]]$trans.U)) b <- G$smooth[[i]]$trans.U%*%b
p <- c(p,b)
}
}
}
var.param <- coef(ret$lme$modelStruct$reStruct)
n.v <- length(var.param)
# k <- 1
spl <- list()
if (G$m>0) for (i in 1:G$m) # var.param in reverse term order, but forward order within terms!!
{ ii <- G$pord[i]
n.sp <- length(object$smooth[[ii]]$S) # number of s.p.s for this term
if (n.sp>0) {
if (inherits(object$smooth[[ii]],"tensor.smooth")) ## ... really mean pdTens used here...
## object$sp[k:(k+n.sp-1)]
spl[[ii]] <- notExp2(var.param[(n.v-n.sp+1):n.v])
else ## object$sp[k:(k+n.sp-1)]
spl[[ii]] <- 1/notExp2(var.param[n.v:(n.v-n.sp+1)])
}
# k <- k + n.sp
n.v <- n.v - n.sp
}
object$sp <- rep(0,0)
if (length(spl)) for (i in 1:length(spl)) if (!is.null(spl[[i]])) object$sp <- c(object$sp,spl[[i]])
if (length(object$sp)==0) object$sp <- NULL
object$coefficients <- p
V <- extract.lme.cov2(ret$lme,mf,n.sr+1) # the data covariance matrix, excluding smooths
## obtain XVX and S....
first.para <- last.para <- rep(0,G$m) ## collect first and last para info relevant to expanded Xf
if (fs.present) { ## First create expanded Xf...
Xf <- G$Xf[,1:G$nsdf,drop=FALSE]
if (G$m>0) for (i in 1:G$m) {# Accumulate the total model matrix
ind <- object$smooth[[i]]$first.para:object$smooth[[i]]$last.para
if (is.null(object$smooth[[i]]$fac)) { ## normal smooth
first.para[i] <- ncol(Xf)+1
Xf <- cbind(Xf,G$Xf[,ind])
last.para[i] <- ncol(Xf)
} else { ## smooth conditioned on multilevel factor. Expand Xf
flev <- levels(object$smooth[[i]]$fac)
first.para[i] <- ncol(Xf)+1
for (k in 1:length(flev)) {
Xf <- cbind(Xf,G$Xf[,ind]*as.numeric(object$smooth[[i]]$fac==flev[k]))
}
last.para[i] <- ncol(Xf)
}
}
object$R <- formXtViX(V,Xf) ## inefficient, if there are smooths conditioned on factors
XVX <- crossprod(object$R)
nxf <- ncol(Xf)
} else {
if (G$m>0) for (i in 1:G$m) {
first.para[i] <- object$smooth[[i]]$first.para
last.para[i] <- object$smooth[[i]]$last.para
}
object$R <- formXtViX(V,G$Xf)
XVX <- crossprod(object$R)
nxf <- ncol(G$Xf)
}
object$R <- object$R*ret$lme$sigma ## correction to what is required by summary.gam
## Now S...
S <- matrix(0,nxf,nxf) ## penalty matrix
first <- G$nsdf+1
k <- 1
if (G$m>0) for (i in 1:G$m) {# Accumulate the total penalty matrix
if (is.null(object$smooth[[i]]$fac)) { ## simple regular smooth...
ind <- first.para[i]:last.para[i]
ns <-length(object$smooth[[i]]$S)
if (ns) for (l in 1:ns) {
S[ind,ind] <- S[ind,ind] +
object$smooth[[i]]$S[[l]]*object$sp[k]
k <- k+1
}
} else { ## smooth conditioned on factor
flev <- levels(object$smooth[[i]]$fac)
ind <- first.para[i]:(first.para[i]+object$smooth[[i]]$n.para-1)
ns <- length(object$smooth[[i]]$S)
for (j in 1:length(flev)) {
if (ns) for (l in 1:ns) {
S[ind,ind] <- S[ind,ind] +
object$smooth[[i]]$S[[l]]*object$sp[k]
k <- k+1
}
k <- k - ns ## same smoothing parameters repeated for each factor level
ind <- ind + object$smooth[[i]]$n.para
}
k <- k + ns
}
}
S <- S/ret$lme$sigma^2 # X'V^{-1}X divided by \sigma^2, so should S be
## now replace original first.para and last.para with expanded versions...
if (G$m) for (i in 1:G$m) {
object$smooth[[i]]$first.para <- first.para[i]
object$smooth[[i]]$last.para <- last.para[i]
}
## stable computation of coefficient covariance matrix...
ev <- eigen(XVX+S,symmetric=TRUE)
ind <- ev$values != 0
iv <- ev$values;iv[ind] <- 1/ev$values[ind]
Vb <- ev$vectors%*%(iv*t(ev$vectors))
object$edf<-rowSums(Vb*t(XVX))
object$df.residual <- length(object$y) - sum(object$edf)
#if (!is.null(ret$lme$aic)) { ## finish the conditional AIC (only happens if no correlation)
# object$aic <- ret$lme$aic + sum(object$edf) ## requires edf for r.e. as well!
# ret$lme$aic<- NULL
#}
object$sig2 <- ret$lme$sigma^2
if (lme.used) { object$method <- paste("lme.",method,sep="")}
else { object$method <- "PQL"}
if (!lme.used||method=="ML") Vb <- Vb*length(G$y)/(length(G$y)-G$nsdf)
object$Vp <- Vb
object$Ve <- Vb%*%XVX%*%Vb
object$prior.weights <- weights
class(object) <- "gam"
## If prediction parameterization differs from fit parameterization, transform now...
## (important for t2 smooths, where fit constraint is not good for component wise
## prediction s.e.s)
if (!is.null(G$P)) {
object$coefficients <- G$P %*% object$coefficients
object$Vp <- G$P %*% object$Vp %*% t(G$P)
object$Ve <- G$P %*% object$Ve %*% t(G$P)
}
object$linear.predictors <- predict.gam(object,type="link")
object$fitted.values <- object$family$linkinv(object$linear.predictors)
object$residuals <- residuals(ret$lme) #as.numeric(G$y) - object$fitted.values
if (G$nsdf>0) term.names<-colnames(G$X)[1:G$nsdf] else term.names<-array("",0)
n.smooth <- length(G$smooth)
if (n.smooth) {
for (i in 1:n.smooth)
{ k <- 1
for (j in object$smooth[[i]]$first.para:object$smooth[[i]]$last.para)
{ term.names[j] <- paste(object$smooth[[i]]$label,".",as.character(k),sep="")
k <- k+1
}
}
if (!is.null(object$sp)) names(object$sp) <- names(G$sp)
}
names(object$coefficients) <- term.names # note - won't work on matrices!!
names(object$edf) <- term.names
if (is.null(weights)) object$prior.weights <- object$y*0+1
else if (wisvf) object$prior.weights <- varWeights.dfo(ret$lme,mf)^2
else object$prior.weights <- ret$lme$w
object$weights <- object$prior.weights
if (!is.null(G$Xcentre)) object$Xcentre <- G$Xcentre ## column centering values
## set environments to global to avoid enormous saved object files
environment(attr(object$model,"terms")) <-
environment(object$terms) <- environment(object$pterms) <-
environment(object$formula) <- .GlobalEnv
if (!is.null(object$pred.formula)) environment(object$pred.formula) <- .GlobalEnv
ret$gam <- object
environment(attr(ret$lme$data,"terms")) <- environment(ret$lme$terms) <- .GlobalEnv
if (!is.null(ret$lme$modelStruct$varStruct)) {
environment(attr(ret$lme$modelStruct$varStruct,"formula")) <- .GlobalEnv
}
if (!is.null(ret$lme$modelStruct$corStruct)) {
environment(attr(ret$lme$modelStruct$corStruct,"formula")) <- .GlobalEnv
}
class(ret) <- c("gamm","list")
ret
} ## end gamm
test.gamm <- function(control=nlme::lmeControl(niterEM=3,tolerance=1e-11,msTol=1e-11))
## this function is a response to repeated problems with nlme/R updates breaking
## the pdTens class. It tests for obvious breakages!
{ test1<-function(x,z,sx=0.3,sz=0.4)
{ x<-x*20
(pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+
0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2))
}
compare <- function(b,b1,edf.tol=.001)
{ edf.diff <- abs(sum(b$edf)-sum(b1$edf))
fit.cor <- cor(fitted(b),fitted(b1))
if (fit.cor<.999) { cat("FAILED: fit.cor = ",fit.cor,"\n");return()}
if (edf.diff>edf.tol) { cat("FAILED: edf.diff = ",edf.diff,"\n");return()}
cat("PASSED \n")
}
n<-500
x<-runif(n)/20;z<-runif(n);
f <- test1(x,z)
y <- f + rnorm(n)*0.2
control$sigma <- NULL ## avoid failure on silly test
cat("testing covariate scale invariance ... ")
b <- gamm(y~te(x,z), control=control )
x1 <- x*100
b1 <- gamm(y~te(x1,z),control=control)
res <- compare(b$gam,b1$gam)
cat("testing invariance w.r.t. response ... ")
y1 <- y*100
b1 <- gamm(y1~te(x,z),control=control)
res <- compare(b$gam,b1$gam)
cat("testing equivalence of te(x) and s(x) ... ")
b2 <- gamm(y~te(x,k=10,bs="cr"),control=control)
b1 <- gamm(y~s(x,bs="cr",k=10),control=control)
res <- compare(b2$gam,b1$gam,edf.tol=.1)
cat("testing equivalence of gam and gamm with same sp ... ")
b1 <- gam(y~te(x,z),sp=b$gam$sp)
res <- compare(b$gam,b1)
if (FALSE) cat(res,x1,y1) ## fool codetools
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.