Nothing
#############################################################################################################
# Author :
# Florian Rohart, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#
# created: 22-04-2015
# last modified: 05-10-2017
#
# Copyright (C) 2015
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#############################################################################################################
# ========================================================================================================
# internal_wrapper.mint: perform a vertical PLS on a combination of experiments, input as a matrix in X
# this function is a particular setting of internal_mint.block, the formatting of the input is checked in Check.entry.pls
# internal function. Do not export in NAMESPACE.
# ========================================================================================================
# used in (mint).(s)pls(da)
# X: numeric matrix of predictors
# Y: numeric vector or matrix of responses
# ncomp: the number of components to include in the model. Default to 2.
# study: grouping factor indicating which samples are from the same study
# keepX: number of \eqn{X} variables kept in the model on the last components.
# keepY: number of \eqn{Y} variables kept in the model on the last components.
# mode: input mode, one of "canonical", "classic", "invariant" or "regression". Default to "regression"
# scale: boleean. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE).
# near.zero.var: boolean, see the internal \code{\link{nearZeroVar}} function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations
# max.iter: integer, the maximum number of iterations.
# tol: Convergence stopping value.
# logratio: one of "none", "CLR"
# DA: indicate whether it's a DA analysis, only used for the multilvel approach with withinVariation
# multilevel: multilevel is passed to multilevel(design=) in withinVariation. Y is ommited and should be included in multilevel design
internal_wrapper.mint = function(X,
Y,
study,
ncomp = 2,
keepX,
keepY,
test.keepX=NULL,
test.keepY=NULL,
mode,
scale = FALSE,
near.zero.var = FALSE,
max.iter = 100,
tol = 1e-06,
logratio = "none", # one of "none", "CLR"
DA = FALSE, # indicate whether it's a DA analysis, only used for the multilvel approach with withinVariation
multilevel = NULL, # multilevel is passed to multilevel(design=) in withinVariation. Y is ommited and should be included in multilevel design
misdata = NULL, is.na.A = NULL, ind.NA = NULL, ind.NA.col = NULL,
all.outputs=FALSE,
remove.object=NULL
)
{
if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0 || length(ncomp)>1)
stop("invalid number of variates, 'ncomp'.")
#-- validation des arguments --#
check = Check.entry.pls(X, Y, ncomp, keepX, keepY, mode=mode, scale=scale,
near.zero.var=near.zero.var, max.iter=max.iter ,tol=tol ,logratio=logratio ,DA=DA, multilevel=multilevel)
X = check$X
input.X = X # save the checked X, before logratio/multileve/scale
Y = check$Y
ncomp = check$ncomp
mode = check$mode
keepX = check$keepX
keepY = check$keepY
nzv.A = check$nzv.A
rm(check) # free memory
#remove `X' from the previous environment
if(!is.null(remove.object))
rm(list=remove.object, envir=parent.frame()) # free memory
#test.keepX and test.keepY must be checked before (in tune)
#set the default study factor
if (missing(study))
{
study = factor(rep(1,nrow(X)))
} else {
study = as.factor(study)
#if(nlevels(study) == 1)
#stop("'study' has a single level, no need to use the MINT approach")
}
if (length(study) != nrow(X))
stop(paste0("'study' must be a factor of length ",nrow(X),"."))
if (any(table(study) <= 1))
stop("At least one study has only one sample, please consider removing before calling the function again")
if (any(table(study) < 5))
warning("At least one study has less than 5 samples, mean centering might not do as expected")
design = matrix(c(0,1,1,0), ncol = 2, nrow = 2, byrow = TRUE)
#-----------------------------#
#-- logratio transformation --#
X = logratio.transfo(X=X, logratio=logratio)
#as X may have changed
if (ncomp > min(ncol(X), nrow(X)))
stop("'ncomp' should be smaller than ", min(ncol(X), nrow(X)), call. = FALSE)
#-- logratio transformation --#
#-----------------------------#
#---------------------------------------------------------------------------#
#-- multilevel approach ----------------------------------------------------#
if (!is.null(multilevel))
{
if (!DA)
{
Xw = withinVariation(X, design = multilevel)
Yw = withinVariation(Y, design = multilevel)
X = Xw
Y = Yw
} else {
Xw = withinVariation(X, design = multilevel)
X = Xw
#-- Need to set Y variable for 1 or 2 factors
Y = multilevel[, -1,drop=FALSE]
if (ncol(Y)>0)
Y = apply(Y, 1, paste, collapse = ".") # paste is to combine in the case we have 2 levels
Y = as.factor(Y)
Y.factor = Y
Y = unmap(Y)
colnames(Y) = levels(Y)
rownames(Y) = rownames(X)
# if DA keepY should be all the levels (which is not happening in the check because of multilevel
keepY = rep(ncol(Y),ncomp)
}
}
#-- multilevel approach ----------------------------------------------------#
#---------------------------------------------------------------------------#
#---------------------------------------------------------------------------#
#-- keepA ----------------------------------------------------#
# shaping keepA, contains all the keepX/keepY models to be constructed
if(!is.null(test.keepX) & !is.null(test.keepY))
{
test.keepA = lapply(list(X=test.keepX, Y=test.keepY),sort) #sort test.keepX so as to be sure to chose the smallest in case of several minimum
} else {test.keepA=NULL}
keepA = vector("list", length = ncomp) # one keepA per comp
names(keepA) = paste0("comp",1:ncomp)
for(comp in 1:length(keepX)) # keepA[[block]] [1:ncomp]
keepA[[comp]] = lapply(list(X=keepX, Y=keepY), function(x) x[comp])
if(!is.null(test.keepA))
keepA[[ncomp]] = test.keepA
keepA = lapply(keepA, expand.grid)
# keepA[[comp]] is a matrix where each row is all the keepX the test over the block (each block is a column)
#-- keepA ----------------------------------------------------#
#---------------------------------------------------------------------------#
#---------------------------------------------------------------------------#
#-- pls approach ----------------------------------------------------#
result = internal_mint.block(A = list(X = X, Y = Y), indY = 2, mode = mode, ncomp = c(ncomp, ncomp), tol = tol, max.iter = max.iter,
design = design, keepA = keepA,
scale = scale, scheme = "horst",init="svd", study = study, misdata = misdata, is.na.A = is.na.A, ind.NA = ind.NA, ind.NA.col = ind.NA.col,
all.outputs= all.outputs, remove.object=c("X"))
#-- pls approach ----------------------------------------------------#
#---------------------------------------------------------------------------#
# result contains all loadings and variates of the test.keepX and test.keepY (if not null)
# if no test.keepX and test.keepY, then it's classical outputs
result$keepX = keepX
result$keepY = keepY
result$ncomp = ncomp
if(near.zero.var)
result$nzv = nzv.A
if(!is.null(multilevel) & DA)
result$Y.factor = Y.factor
result$input.X = input.X
class(result) = c("mint.spls.hybrid")
return(invisible(result))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.