R/CI.R

Defines functions CI

Documented in CI

#' Confidence intervals
#'
#' Computes the confidence intervals of the step length and turning angle parameters,
#' as well as for the transition probabilities regression parameters.
#'
#' @param m A \code{moveHMM} object
#' @param alpha Range of the confidence intervals. Default: 0.95 (i.e. 95\% CIs).
#' @param nbSims Number of simulations in the computation of the CIs for the angle parameters.
#' Default: 10^6.
#'
#' @return A list of the following objects:
#' \item{stepPar}{Confidence intervals for the parameters of the step lengths distribution}
#' \item{anglePar}{Confidence intervals for the parameters of the turning angles distribution}
#' \item{beta}{Confidence intervals for the regression coefficients of the transition probabilities.}
#'
#' @examples
#' # m is a moveHMM object (as returned by fitHMM), automatically loaded with the package
#' m <- example$m
#'
#' CI(m)
#'
#' @export
#' @importFrom MASS ginv

CI <- function(m,alpha=0.95,nbSims=10^6)
{
    if(!is.moveHMM(m))
        stop("'m' must be a moveHMM object (as output by fitHMM)")

    if(length(m$mod)<=1)
        stop("The given model hasn't been fitted.")

    if(alpha<0 | alpha>1)
        stop("alpha needs to be between 0 and 1.")

    nbStates <- ncol(m$mle$stepPar)

    # identify covariates
    covsCol <- which(names(m$data)!="ID" & names(m$data)!="x" & names(m$data)!="y" &
                         names(m$data)!="step" & names(m$data)!="angle")
    nbCovs <- length(covsCol)-1 # substract intercept column

    # inverse of Hessian
    Sigma <- ginv(m$mod$hessian)
    var <- diag(Sigma)

    p <- parDef(m$conditions$stepDist,m$conditions$angleDist,nbStates,m$conditions$estAngleMean,
                m$conditions$zeroInflation)

    # check if some parameters are close to their bounds
    check <- FALSE
    stepBounds <- p$bounds[1:(p$parSize[1]*nbStates),]
    stepPar <- as.vector(t(m$mle$stepPar))
    # are step parameters close to their lower bounds?
    if(length(which(round(abs(stepPar-stepBounds[,1]),5)==0))>0)
        check <- TRUE
    # are step parameters close to their upper bounds?
    if(length(which(round(abs(stepPar-stepBounds[,2]),5)==0))>0)
        check <- TRUE

    if(m$conditions$angleDist!="none") {
        angleBounds <- p$bounds[(p$parSize[1]*nbStates+1):nrow(p$bounds),]
        anglePar <- as.vector(t(m$mle$anglePar))
        # are angle parameters close to their lower bounds?
        if(length(which(round(abs(anglePar-angleBounds[,1]),5)==0))>0)
            check <- TRUE
        # are angle parameters close to their upper bounds?
        if(length(which(round(abs(anglePar-angleBounds[,2]),5)==0))>0)
            check <- TRUE
    }

    if(check)
        warning(paste("Some of the parameter estimates seem to lie close to the boundaries of",
                      "their parameter space.\n  The associated CIs are probably unreliable",
                      "(or might not be computable)."))

    # identify parameters of interest
    i1 <- p$parSize[1]*nbStates
    i2 <- sum(p$parSize)*nbStates+1
    i3 <- i2+nbStates*(nbStates-1)*(nbCovs+1)-1

    if(m$conditions$estAngleMean) {
        if(nbStates>1) {
            # select step parameters and "beta" parameters
            est <- c(m$mod$estimate[1:i1],m$mod$estimate[i2:i3])
            var <- c(var[1:i1],var[i2:i3])
        } else {
            # only select step parameters
            est <- m$mod$estimate[1:i1]
            var <- var[1:i1]
        }
    } else {
        if(nbStates>1) {
            # select step parameters, angle parameters, and "beta" parameters
            est <- c(m$mod$estimate[1:i3])
            var <- c(var[1:i3])
        } else {
            # only select step parameters and angle parameters
            est <- m$mod$estimate[1:(i2-1)]
            var <- var[1:(i2-1)]
        }
    }

    # if negative variance, replace by NA
    var[which(var<0)] <- NA

    # define appropriate quantile
    quantSup <- qnorm(1-(1-alpha)/2)

    # compute lower and upper for working parameters
    wlower <- est-quantSup*sqrt(var)
    wupper <- est+quantSup*sqrt(var)

    # compute lower and upper on natural scale
    if(m$conditions$estAngleMean) {
        lower <- w2n(wlower,p$bounds[1:i1,],c(p$parSize[1],0),nbStates,nbCovs,FALSE,TRUE)
        upper <- w2n(wupper,p$bounds[1:i1,],c(p$parSize[1],0),nbStates,nbCovs,FALSE,TRUE)
    } else {
        lower <- w2n(wlower,p$bounds[1:(i2-1),],c(p$parSize[1],1),nbStates,nbCovs,FALSE,TRUE)
        upper <- w2n(wupper,p$bounds[1:(i2-1),],c(p$parSize[1],1),nbStates,nbCovs,FALSE,TRUE)
    }

    # CIs for angle parameters
    if(m$conditions$estAngleMean)
        anglePar <- angleCI(m,alpha,nbSims)
    else {
        low <- rbind(rep(NA,nbStates),lower$anglePar)
        up <- rbind(rep(NA,nbStates),upper$anglePar)
        anglePar <- list(lower=low,upper=up)
    }

    # group CIs for step parameters and t.p. coefficients
    stepPar <- list(lower=lower$stepPar,upper=upper$stepPar)
    beta <- list(lower=lower$beta,upper=upper$beta)

    # name the rows and columns of the CIs
    rownames(stepPar$lower) <- rownames(m$mle$stepPar)
    rownames(stepPar$upper) <- rownames(m$mle$stepPar)
    colnames(stepPar$lower) <- colnames(m$mle$stepPar)
    colnames(stepPar$upper) <- colnames(m$mle$stepPar)
    if(m$conditions$angleDist!="none") {
        rownames(anglePar$lower) <- rownames(m$mle$anglePar)
        rownames(anglePar$upper) <- rownames(m$mle$anglePar)
        colnames(anglePar$lower) <- colnames(m$mle$anglePar)
        colnames(anglePar$upper) <- colnames(m$mle$anglePar)
    }
    if(!is.null(m$mle$beta)) {
        rownames(beta$lower) <- rownames(m$mle$beta)
        rownames(beta$upper) <- rownames(m$mle$beta)
        colnames(beta$lower) <- colnames(m$mle$beta)
        colnames(beta$upper) <- colnames(m$mle$beta)
    }

    if(!is.null(m$mle$beta))
        return(list(stepPar=stepPar,anglePar=anglePar,beta=beta))
    else
        return(list(stepPar=stepPar,anglePar=anglePar))
}

Try the moveHMM package in your browser

Any scripts or data that you put into this service are public.

moveHMM documentation built on June 7, 2018, 5:05 p.m.