R/optimum_allocation.R

Defines functions optimum_allocation

Documented in optimum_allocation

#' Optimum Allocation
#'
#' Determines the optimum sampling fraction and sample size for
#' each stratum in a stratified random sample, which
#' minimizes the variance of the sample mean according to Neyman
#' Allocation or Exact Optimum Sample Allocation (Wright 2014).
#' @param data A data frame or matrix with at least one column specifying
#' each unit's stratum, and either 1) a second column holding the value of the
#' continuous variable for which the sample mean variance should be minimized
#' (\code{y}) or 2) two columns: one holding the the within-stratum
#' standard deviation for the variable of interest (\code{sd_h}) and another
#' holding the stratum sample sizes (\code{N_h}).
#' If \code{data} contains a column \code{y} holding values for
#' the variable of interest, then \code{data} should have one row for
#' each sampled unit. If \code{data} holds \code{sd_h} and \code{N_h}, the
#' within-stratum standard deviations and population sizes, then \code{data}
#' should have one row per stratum.
#' Other columns are allowed but will be ignored.
#' @param strata a character string or vector of character strings
#' specifying the name(s) of columns which specify the stratum
#' that each unit belongs to. If multiple column names are
#' provided, each unique combination of values in these columns
#' is taken to define one stratum.
#' @param y a character string specifying the name of the
#' continuous variable for which the variance should be minimized.
#' Defaults to \code{NULL} and should be left as \code{NULL} when \code{data}
#' holds stratum standard deviations and sample sizes instead of individual
#' sampling units.
#' @param sd_h a character string specifying the name of the
#' column holding the within-stratum standard deviations for each stratum.
#' Defaults to \code{NULL} and should be left as \code{NULL} when \code{data}
#' holds individual sampling units.
#' @param N_h a character string specifying the name of the
#' column holding the population stratum sizes for each stratum.
#' Defaults to \code{NULL} and should be left as \code{NULL} when \code{data}
#' holds individual sampling units.
#' @param nsample the desired total sample size. Defaults to \code{NULL}.
#' @param method a character string specifying the method of
#' optimum sample allocation to use. Must be one of:
#' \itemize{
#' \item \code{"WrightII"}, the default, uses Algorithm II from
#' Wright (2014) to determine the optimum allocation of a fixed
#' sample size across the strata. It requires that at least two
#' samples are allocated to each stratum.
#' \item \code{"WrightI"} uses Wright's Algorithm I to determine
#' the optimum sample allocation. It only requires that at least
#' one sample is allocated to each stratum, and can therefore
#' lead to a biased variance estimate.
#' \item \code{"Neyman"} uses the standard method of Neyman
#' Allocation to determine the optimum sample allocation. When
#' \code{nsample = NULL}, the optimal sampling fraction is calculated
#' and returned. When a numeric value is specified for \code{nsample},
#' then the number allocated to each stratum is the optimal sampling
#' fraction times \code{nsample} rounded to the nearest integer,
#' which may no longer be optimall.
#' }
#' @param ndigits a numeric value specifying the number of digits
#' to which the standard deviation and stratum fraction should be rounded.
#' Defaults to 2.
#' @param allow.na logical input specifying whether y should
#' be allowed to have NA values. Defaults to \code{FALSE}.
#' @examples
#' optimum_allocation(
#'   data = iris, strata = "Species", y = "Sepal.Length",
#'   nsample = 40, method = "WrightII"
#' )
#'
#' # Or if input data is summary of strata sd and N:
#' iris_summary <- data.frame(
#'   strata = unique(iris$Species),
#'   size = c(50, 50, 50),
#'   sd = c(0.3791, 0.3138, 0.3225)
#' )
#'
#' optimum_allocation(
#'   data = iris_summary, strata = "strata",
#'   sd_h = "sd", N_h = "size",
#'   nsample = 40, method = "WrightII"
#' )
#' @export
#' @references Wright, T. (2014). A Simple Method of Exact Optimal
#' Sample Allocation under Stratification with any Mixed
#' Constraint Patterns, Research Report Series (Statistics #2014-07),
#' Center for Statistical Research and Methodology, U.S. Bureau
#' of the Census, Washington, D.C.
#' @return Returns a data frame with the number of samples allocated to each
#' stratum, or just the sampling fractions if nsample is NULL.
#' @importFrom magrittr %>%

optimum_allocation <- function(data, strata,
                               y = NULL,
                               sd_h = NULL,
                               N_h = NULL,
                               nsample = NULL,
                               ndigits = 2,
                               method = c("WrightII", "WrightI", "Neyman"),
                               allow.na = FALSE) {
  n_sd <- sd <- n <- npop <- stratum_fraction <- NULL
  # bind local vars as necessary
  if (is.matrix(data) | tibble::is_tibble(data)) {
    data <- data.frame(data)
  }
  if (is.data.frame(data) == FALSE) {
    stop("Input data must be a dataframe or matrix with named columns.")
  }
  if (all(strata %in% names(data)) == FALSE) {
    stop("'Strata' must be a string or vector of strings matching
         column names of data.")
  }
  if (anyNA(data[, strata])) {
    stop("Columns specifying strata contain NAs")
  }
  if ((is.null(y) & is.null(sd_h)) |
    (!is.null(y) & !is.null(sd_h))) {
    stop("One and only one of 'y' or 'sd_h' must be provided. If 'sd_h' is
    provided, then 'N_h' must be as well. Use ?optimum_allocation for help")
  }

  # Start if y is given and sd is NULL
  if (is.null(sd_h)) {
    if (!is.null(N_h)) {
      stop("If 'sd_h' is NULL, 'N_h' should also be NULL.")
    }

    if (y %in% names(data) == FALSE) {
      stop("'y' must be a character string matching a column name of data.")
    }
    if (is.numeric(data[, y]) == FALSE) {
      stop("'y' must be numeric.")
    }
    method <- match.arg(method)
    y <- enquo(y)
    strata <- enquo(strata)
    output_df <- data %>%
      dplyr::select(!!strata, !!y)
    strata <- interaction(dplyr::select(output_df, -!!y))
    output_df <- cbind(strata, output_df)
    output_df <- output_df[, c(1, ncol(output_df))] # Only columns of interest
    names(output_df) <- c("strata", "y")
    if (allow.na == FALSE & sum(is.na(output_df)) >= 1) {
      stop("Data contains NAs. If this is intentional, set allow.na to TRUE.")
    }
    if (min(dplyr::count(
      dplyr::filter(output_df, !(is.na(y))), strata
    )[, "n"]) < 2 |
      length(unique(dplyr::filter(output_df, !(is.na(y)))$strata)) !=
        length(unique(output_df$strata))) {
      stop("Function requires at least two observations per stratum")
    }
    if (method == "Neyman") {
      output_df <- output_df %>%
        dplyr::group_by(strata) %>%
        dplyr::summarize(
          n = dplyr::n(),
          sd = stats::sd(y, na.rm = TRUE),
          n_sd = stats::sd(y, na.rm = TRUE) * dplyr::n()
        ) %>%
        dplyr::mutate(
          stratum_fraction = round(n_sd / sum(n_sd),
            digits = ndigits
          ),
          sd = round(sd, digits = ndigits),
          n_sd = round(n_sd, digits = ndigits)
        )
      output_df <- (as.data.frame(output_df))
      names(output_df)[names(output_df) == "n"] <- "npop"
      if (is.null(nsample)) {
        output_df <- dplyr::arrange(output_df, strata)
        return(output_df)
      }
      else {
        output_df <- output_df %>%
          dplyr::mutate(
            stratum_size = round(nsample * n_sd / sum(n_sd),
              digits = 0
            ),
            sd = round(sd, digits = ndigits),
            n_sd = round(n_sd, digits = ndigits)
          )
        output_df <- dplyr::arrange(output_df, strata)
        return(output_df)
      }
    }
    else if (method == "WrightI") {
      if (is.null(nsample)) {
        stop("This method requires a fixed nsample. Try method =
             'Neyman' for exact sampling fractions.")
      }
      else {
        n_strata <- length(unique(strata))
        n_minus_H <- nsample - n_strata
        if (n_minus_H <= 0) {
          stop("'nsample' is too small for this method.")
        }
        output_df <- output_df %>%
          dplyr::group_by(strata) %>%
          dplyr::summarize(
            n = dplyr::n(),
            sd = stats::sd(y, na.rm = TRUE),
            n_sd = stats::sd(y, na.rm = TRUE) * dplyr::n()
          )
        if (nsample > sum(output_df$n)) {
          stop("'nsample' is larger than population size")
        }
        priority_array <- list()
        for (i in 1:n_strata) {
          priority_array[[i]] <- c(
            rep(output_df[i, "n_sd"],
              times = min(output_df[i, "n"] - 1, n_minus_H)
            ),
            rep(NULL,
              times = ifelse(n_minus_H > (output_df[i, "n"] - 1),
                n_minus_H - (output_df[i, "n"] - 1),
                0
              )
            )
          )
          # All rows are same length, but zeroes so that n_sample
          # won't be larger than n_strata
          names(priority_array)[[i]] <- paste0("n_sd", as.character(i))
        }
        suppressMessages(Wright_output <- dplyr::bind_rows(priority_array))
        Wright_output[is.na(Wright_output)] <- 0
        mult_vec <- vector()
        for (i in 1:(n_minus_H + 1)) {
          mult_vec[i] <- 1 / (sqrt(i * (i + 1)))
        }
        for (i in seq_len(ncol(Wright_output))) {
          Wright_output[, i] <- Wright_output[, i] * mult_vec[i]
        }
        cutoff <- (sort(unlist(Wright_output, use.names = FALSE),
          decreasing = TRUE
        ))[n_minus_H]
        stratum_size <- rowSums(Wright_output >= cutoff) + 1
        final_output <- cbind(
          output_df[, c("strata", "n", "sd", "n_sd")], stratum_size
        )
        final_output <- final_output %>%
          dplyr::mutate(
            stratum_fraction = round(stratum_size / nsample,
              digits = ndigits
            ),
            sd = round(sd, digits = ndigits),
            n_sd = round(n_sd, digits = ndigits)
          )
        final_output <- final_output[c(
          "strata", "n", "sd", "n_sd", "stratum_fraction",
          "stratum_size"
        )]
        names(final_output)[names(final_output) == "n"] <- "npop"
        final_output <- dplyr::arrange(final_output, strata)
        return(final_output)
      }
    }
    else if (method == "WrightII") {
      if (is.null(nsample)) {
        stop("This method requires a fixed nsample. Try method =
            'Neyman' for exact sampling fractions.")
      }
      else {
        n_strata <- length(unique(strata))
        n_minus_2H <- nsample - 2 * n_strata
        if (n_minus_2H <= 0) {
          stop("'nsample' is too small for this method.")
        }
        output_df <- output_df %>%
          dplyr::group_by(strata) %>%
          dplyr::summarize(
            n = dplyr::n(),
            sd = stats::sd(y, na.rm = TRUE),
            n_sd = stats::sd(y, na.rm = TRUE) * dplyr::n()
          )
        if (nsample > sum(output_df$n)) {
          stop("'nsample' is larger than population size")
        }
        priority_array <- list()
        for (i in 1:n_strata) {
          priority_array[[i]] <- c(
            rep(output_df[i, "n_sd"],
              times = min(output_df[i, "n"] - 2, n_minus_2H)
            ),
            rep(output_df[i, "n_sd"] * 0,
              times = ifelse(n_minus_2H > (output_df[i, "n"] - 2),
                n_minus_2H - (output_df[i, "n"] - 2),
                0
              )
            )
          )
          # All rows are same length, but zeroes so that n_sample
          # won't be larger than n_strata. Zero instead of NULL so
          # entries in list aren't empty when n=2.
          names(priority_array)[[i]] <- paste0("n_sd", as.character(i))
        }
        suppressMessages(Wright_output <- dplyr::bind_rows(priority_array))
        Wright_output[is.na(Wright_output)] <- 0
        mult_vec <- vector()
        for (i in 2:(n_minus_2H + 1)) {
          mult_vec[i - 1] <- 1 / (sqrt(i * (i + 1)))
        }
        for (i in seq_len(ncol(Wright_output))) {
          Wright_output[, i] <- Wright_output[, i] * mult_vec[i]
        }
        cutoff <- (sort(unlist(Wright_output, use.names = FALSE),
          decreasing = TRUE
        ))[n_minus_2H]
        stratum_size <- rowSums(Wright_output >= cutoff) + 2
        final_output <- cbind(
          output_df[, c("strata", "n", "sd", "n_sd")], stratum_size
        )
        final_output <- final_output %>%
          dplyr::mutate(
            stratum_fraction = round(stratum_size / nsample,
              digits = ndigits
            ),
            sd = round(sd, digits = ndigits),
            n_sd = round(n_sd, digits = ndigits)
          )
        final_output <- final_output[
          c(
            "strata", "n", "sd", "n_sd", "stratum_fraction",
            "stratum_size"
          )
        ]
        names(final_output)[names(final_output) == "n"] <- "npop"
        final_output <- dplyr::arrange(final_output, strata)
        return(final_output)
      }
    }
    # End if y is given and sd/N is NULL
  }

  # Start if sd/N is given and y is NULL
  if (is.null(y)) {
    if (sd_h %in% names(data) == FALSE | N_h %in% names(data) == FALSE) {
      stop("'sd_h' and 'N_h' must be character strings
           matching column names of 'data'.")
    }
    if (is.numeric(data[, sd_h]) == FALSE |
      is.numeric(data[, N_h]) == FALSE) {
      stop("'sd_h' and 'N_h' must be numeric.")
    }
    method <- match.arg(method)
    sd_h <- enquo(sd_h)
    N_h <- enquo(N_h)
    strata <- enquo(strata)
    output_df <- data %>%
      dplyr::select(!!strata, !!N_h, !!sd_h)
    strata <- interaction(dplyr::select(output_df, -!!N_h, -!!sd_h))
    output_df <- cbind(strata, output_df)
    output_df <- output_df[, c(1, ncol(output_df) - 1, ncol(output_df))]
    # Only columns of interest
    names(output_df) <- c("strata", "N_h", "sd_h")
    if (any(table(output_df$strata) > 1)) {
      stop("If using 'sd_h' and 'N_h' instead of 'y',
      data must only contain one row per stratum.")
    }
    if (sum(is.na(output_df)) >= 1) {
      stop("Data cannot contain NAs.")
    }
    if (method == "Neyman") {
      output_df <- output_df %>%
        dplyr::mutate(
          n_sd = N_h * sd_h
        ) %>%
        dplyr::mutate(
          stratum_fraction = round(n_sd / sum(n_sd),
            digits = ndigits
          ),
          sd = round(sd_h, digits = ndigits),
          n = N_h,
          n_sd = round(n_sd, digits = ndigits)
        )
      output_df <- (as.data.frame(output_df))
      names(output_df)[names(output_df) == "n"] <- "npop"
      if (is.null(nsample)) {
        output_df <- dplyr::arrange(output_df, strata)
        output_df <- dplyr::select(
          output_df,
          strata, npop, sd, n_sd,
          stratum_fraction
        )
        return(output_df)
      }
      else {
        output_df <- output_df %>%
          dplyr::mutate(
            stratum_size = round(nsample * n_sd / sum(n_sd),
              digits = 0
            ),
            sd = round(sd, digits = ndigits),
            n_sd = round(n_sd, digits = ndigits)
          )
        output_df <- dplyr::arrange(output_df, strata)
        return(output_df)
      }
    }
    else if (method == "WrightI") {
      if (is.null(nsample)) {
        stop("This method requires a fixed nsample. Try method =
           'Neyman' for exact sampling fractions.")
      }
      else {
        n_strata <- length(unique(strata))
        n_minus_H <- nsample - n_strata
        if (n_minus_H <= 0) {
          stop("'nsample' is too small for this method.")
        }
        output_df <- output_df %>%
          dplyr::mutate(
            n = N_h,
            sd = sd_h,
            n_sd = n * sd
          )
        output_df <- tibble::as_tibble(dplyr::select(
          output_df,
          strata, n, sd, n_sd
        ))
        if (nsample > sum(output_df$n)) {
          stop("'nsample' is larger than population size")
        }
        priority_array <- list()
        for (i in 1:n_strata) {
          priority_array[[i]] <- c(
            rep(output_df[i, "n_sd"],
              times = min(output_df[i, "n"] - 1, n_minus_H)
            ),
            rep(NULL,
              times = ifelse(n_minus_H > (output_df[i, "n"] - 1),
                n_minus_H - (output_df[i, "n"] - 1),
                0
              )
            )
          )
          # All rows are same length, but zeroes so that n_sample
          # won't be larger than n_strata
          names(priority_array)[[i]] <- paste0("n_sd", as.character(i))
        }
        suppressMessages(Wright_output <- dplyr::bind_rows(priority_array))
        Wright_output[is.na(Wright_output)] <- 0
        mult_vec <- vector()
        for (i in 1:(n_minus_H + 1)) {
          mult_vec[i] <- 1 / (sqrt(i * (i + 1)))
        }
        for (i in seq_len(ncol(Wright_output))) {
          Wright_output[, i] <- Wright_output[, i] * mult_vec[i]
        }
        cutoff <- (sort(unlist(Wright_output, use.names = FALSE),
          decreasing = TRUE
        ))[n_minus_H]
        stratum_size <- rowSums(Wright_output >= cutoff) + 1
        final_output <- cbind(
          output_df[, c("strata", "n", "sd", "n_sd")], stratum_size
        )
        final_output <- final_output %>%
          dplyr::mutate(
            stratum_fraction = round(stratum_size / nsample,
              digits = ndigits
            ),
            sd = round(sd, digits = ndigits),
            n_sd = round(n_sd, digits = ndigits)
          )
        final_output <- final_output[c(
          "strata", "n", "sd", "n_sd", "stratum_fraction",
          "stratum_size"
        )]
        names(final_output)[names(final_output) == "n"] <- "npop"
        final_output <- dplyr::arrange(final_output, strata)
        return(final_output)
      }
    }
    else if (method == "WrightII") {
      if (is.null(nsample)) {
        stop("This method requires a fixed nsample. Try method =
           'Neyman' for exact sampling fractions.")
      }
      else {
        n_strata <- length(unique(strata))
        n_minus_2H <- nsample - 2 * n_strata
        if (n_minus_2H <= 0) {
          stop("'nsample' is too small for this method.")
        }
        output_df <- output_df %>%
          dplyr::mutate(
            n = N_h,
            sd = sd_h,
            n_sd = n * sd
          )
        output_df <- tibble::as_tibble(dplyr::select(
          output_df,
          strata, n, sd, n_sd
        ))
        if (nsample > sum(output_df$n)) {
          stop("'nsample' is larger than population size")
        }
        priority_array <- list()
        for (i in 1:n_strata) {
          priority_array[[i]] <- c(
            rep(output_df[i, "n_sd"],
              times = min(output_df[i, "n"] - 2, n_minus_2H)
            ),
            rep(output_df[i, "n_sd"] * 0,
              times = ifelse(n_minus_2H > (output_df[i, "n"] - 2),
                n_minus_2H - (output_df[i, "n"] - 2),
                0
              )
            )
          )
          # All rows are same length, but zeroes so that n_sample
          # won't be larger than n_strata. Zero instead of NULL so
          # entries in list aren't empty when n=2.
          names(priority_array)[[i]] <- paste0("n_sd", as.character(i))
        }
        suppressMessages(Wright_output <- dplyr::bind_rows(priority_array))
        Wright_output[is.na(Wright_output)] <- 0
        mult_vec <- vector()
        for (i in 2:(n_minus_2H + 1)) {
          mult_vec[i - 1] <- 1 / (sqrt(i * (i + 1)))
        }
        for (i in seq_len(ncol(Wright_output))) {
          Wright_output[, i] <- Wright_output[, i] * mult_vec[i]
        }
        cutoff <- (sort(unlist(Wright_output, use.names = FALSE),
          decreasing = TRUE
        ))[n_minus_2H]
        stratum_size <- rowSums(Wright_output >= cutoff) + 2
        final_output <- cbind(
          output_df[, c("strata", "n", "sd", "n_sd")], stratum_size
        )
        final_output <- final_output %>%
          dplyr::mutate(
            stratum_fraction = round(stratum_size / nsample,
              digits = ndigits
            ),
            sd = round(sd, digits = ndigits),
            n_sd = round(n_sd, digits = ndigits)
          )
        final_output <- final_output[
          c(
            "strata", "n", "sd", "n_sd", "stratum_fraction",
            "stratum_size"
          )
        ]
        names(final_output)[names(final_output) == "n"] <- "npop"
        final_output <- dplyr::arrange(final_output, strata)
        return(final_output)
      }
    }
    # End if sd is given and y is NULL
  }
}

Try the optimall package in your browser

Any scripts or data that you put into this service are public.

optimall documentation built on June 22, 2024, 9:34 a.m.