Nothing
# pROC: Tools Receiver operating characteristic (ROC curves) with
# (partial) area under the curve, confidence intervals and comparison.
# Copyright (C) 2010-2014 Xavier Robin, Alexandre Hainard, Natacha Turck,
# Natalia Tiberti, Frédérique Lisacek, Jean-Charles Sanchez
# and Markus Müller
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
roc.test <- function(...) {
UseMethod("roc.test")
}
roc.test.formula <- function (formula, data, ...) {
data.missing <- missing(data)
call <- match.call()
roc.data <- roc_utils_extract_formula(formula, data, ...,
data.missing = data.missing,
call = call)
if (length(roc.data$predictor.name) != 2) {
stop("Invalid formula: exactly 2 predictors are required in a formula of type response~predictor1+predictor2.")
}
response <- roc.data$response
predictors <- roc.data$predictors
testres <- roc.test.default(response, predictors, ...)
testres$call <- call
# data.names for pretty print()ing
if (data.missing) {
testres$data.names <- sprintf("%s and %s by %s (%s, %s)", roc.data$predictor.names[1], roc.data$predictor.names[2], roc.data$response.name, testres$roc1$levels[1], testres$roc1$levels[2])
}
else {
testres$data.names <- sprintf("%s and %s in %s by %s (%s, %s)", roc.data$predictor.names[1], roc.data$predictor.names[2], deparse(substitute(data)), roc.data$response.name, testres$roc1$levels[1], testres$roc1$levels[2])
}
return(testres)
}
roc.test.default <- function(response, predictor1, predictor2=NULL, na.rm=TRUE, method=NULL, ...) {
if (is.matrix(predictor1) | is.data.frame(predictor1)) {
if (!is.null(predictor2))
stop("Predictor2 must not be specified if predictor1 is a matrix or a data.frame.")
if (dim(predictor1)[2] == 2 & length(response) == dim(predictor1)[1]) {
roc1 <- roc(response, predictor1[,1], ...)
roc2 <- roc(response, predictor1[,2], ...)
if (!is.null(names(predictor1)))
data.names <- sprintf("%s and %s in %s by %s (%s, %s)", names(predictor1)[1], names(predictor1)[2], deparse(substitute(predictor1)), deparse(substitute(response)), roc1$levels[1], roc1$levels[2])
else if (!is.null(colnames(predictor1)))
data.names <- sprintf("%s and %s in %s by %s (%s, %s)", colnames(predictor1)[1], colnames(predictor1)[2], deparse(substitute(predictor1)), deparse(substitute(response)), roc1$levels[1], roc1$levels[2])
else
data.names <- sprintf("%s by %s (%s, %s)", deparse(substitute(predictor1)), deparse(substitute(response)), roc1$levels[1], roc1$levels[2])
}
else {
stop("Wrong dimension for predictor1 as a matrix or a data.frame.")
}
}
else {
if (missing(predictor2))
stop("Missing argument predictor2 with predictor1 as a vector.")
# Need to remove NAs
if (na.rm) {
nas <- is.na(response) | is.na(predictor1) | is.na(predictor2)
response <- response[!nas]
predictor1 <- predictor1[!nas]
predictor2 <- predictor2[!nas]
}
roc1 <- roc(response, predictor1, ...)
roc2 <- roc(response, predictor2, ...)
call <- match.call()
data.names <- sprintf("%s and %s by %s (%s, %s)", deparse(call$predictor1), deparse(call$predictor2), deparse(call$response), roc1$levels[1], roc1$levels[2])
}
test <- roc.test.roc(roc1, roc2, method=method, ...)
test$data.names <- data.names
return(test)
}
roc.test.auc <- function(roc1, roc2, ...) {
# First save the names
data.names <- paste(deparse(substitute(roc1)), "and", deparse(substitute(roc2)))
# Change roc1 from an auc to a roc object but keep the auc specifications
auc1 <- roc1
attr(auc1, "roc") <- NULL
roc1 <- attr(roc1, "roc")
roc1$auc <- auc1
# Pass to roc.test.roc
testres <- roc.test.roc(roc1, roc2, ...)
testres$call <- match.call()
testres$data.names <- data.names
return(testres)
}
roc.test.smooth.roc <- function(roc1, roc2, ...) {
testres <- roc.test.roc(roc1, roc2, ...)
testres$call <- match.call()
testres$data.names <- paste(deparse(substitute(roc1)), "and", deparse(substitute(roc2)))
return(testres)
}
roc.test.roc <- function(roc1, roc2,
method=c("delong", "bootstrap", "venkatraman", "sensitivity", "specificity"),
sensitivity=NULL, specificity=NULL,
alternative = c("two.sided", "less", "greater"),
paired=NULL,
reuse.auc=TRUE,
boot.n=2000, boot.stratified=TRUE,
ties.method="first",
progress=getOption("pROCProgress")$name,
parallel=FALSE,
conf.level=0.95,
...) {
alternative <- match.arg(alternative)
data.names <- paste(deparse(substitute(roc1)), "and", deparse(substitute(roc2)))
# If roc2 is an auc, take the roc but keep the auc specifications
if (methods::is(roc2, "auc")) {
auc2 <- roc2
attr(auc2, "roc") <- NULL
roc2 <- attr(roc2, "roc")
roc2$auc <- auc2
}
if (roc_utils_is_perfect_curve(roc1) && roc_utils_is_perfect_curve(roc2)) {
warning("roc.test() of two ROC curves with AUC == 1 has always p.value = 1 and can be misleading.")
}
# store which objects are smoothed, and how
smoothing.args <- list()
if (methods::is(roc1, "smooth.roc")) {
smoothing.args$roc1 <- roc1$smoothing.args
smoothing.args$roc1$smooth <- TRUE
roc1 <- attr(roc1, "roc")
}
else {
smoothing.args$roc1 <- list(smooth=FALSE)
}
if (methods::is(roc2, "smooth.roc")) {
smoothing.args$roc2 <- roc2$smoothing.args
smoothing.args$roc2$smooth <- TRUE
roc2 <- attr(roc2, "roc")
}
else {
smoothing.args$roc2 <- list(smooth=FALSE)
}
# Check if we do a paired or unpaired roc.test
if (is.null(paired)) {
# then determine whether the rocs are paired or not
rocs.are.paired <- are.paired(roc1, roc2, return.paired.rocs=TRUE, reuse.auc=TRUE, reuse.ci=FALSE, reuse.smooth=TRUE)
if (rocs.are.paired) {
paired <- TRUE
roc1 <- attr(rocs.are.paired, "roc1")
roc2 <- attr(rocs.are.paired, "roc2")
}
else {
paired <- FALSE
roc1 <- roc1
roc2 <- roc2
}
}
else if (paired) {
# make sure the rocs are really paired
rocs.are.paired <- rocs.are.paired <- are.paired(roc1, roc2, return.paired.rocs=TRUE, reuse.auc=TRUE, reuse.ci=FALSE, reuse.smooth=TRUE)
if (! rocs.are.paired)
stop("The paired ROC test cannot be applied to unpaired curves.")
roc1 <- attr(rocs.are.paired, "roc1")
roc2 <- attr(rocs.are.paired, "roc2")
}
else { # assume unpaired
rocs.are.paired <- are.paired(roc1, roc2, return.paired.rocs=FALSE)
if (rocs.are.paired)
warning("The ROC curves seem to be paired. Consider performing a paired roc.test.")
roc1 <- roc1
roc2 <- roc2
}
# check that the AUC was computed, or do it now
if (is.null(roc1$auc) | !reuse.auc) {
if (smoothing.args$roc1$smooth) {
roc1$auc <- auc(smooth.roc=do.call("smooth.roc", c(list(roc=roc1), smoothing.args$roc1)), ...)
# remove partial.auc.* arguments that are now in roc1$auc and that will mess later processing
# (formal argument "partial.auc(.*)" matched by multiple actual arguments)
# This removal should be safe because we always use smoothing.args with roc1 in the following processing,
# however it is a potential source of bugs.
smoothing.args$roc1$partial.auc <- NULL
smoothing.args$roc1$partial.auc.correct <- NULL
smoothing.args$roc1$partial.auc.focus <- NULL
}
else
roc1$auc <- auc(roc1, ...)
}
if (is.null(roc2$auc) | !reuse.auc) {
if (smoothing.args$roc2$smooth) {
roc2$auc <- auc(smooth.roc=do.call("smooth.roc", c(list(roc=roc2), smoothing.args$roc2)), ...)
# remove partial.auc.* arguments that are now in roc1$auc and that will mess later processing
# (formal argument "partial.auc(.*)" matched by multiple actual arguments)
# This removal should be safe because we always use smoothing.args with roc2 in the following processing,
# however it is a potential source of bugs.
smoothing.args$roc2$partial.auc <- NULL
smoothing.args$roc2$partial.auc.correct <- NULL
smoothing.args$roc2$partial.auc.focus <- NULL
}
else
roc2$auc <- auc(roc2, ...)
}
# check that the same region was requested in auc. Otherwise, issue a warning
if (!identical(attributes(roc1$auc)[names(attributes(roc1$auc))!="roc"], attributes(roc2$auc)[names(attributes(roc2$auc))!="roc"]))
warning("Different AUC specifications in the ROC curves. Enforcing the inconsistency, but unexpected results may be produced.")
# check that the same smoothing params were requested in auc. Otherwise, issue a warning
if (!identical(smoothing.args$roc1, smoothing.args$roc2))
warning("Different smoothing parameters in the ROC curves. Enforcing the inconsistency, but unexpected results may be produced.")
# Check the method
if (missing(method) | is.null(method)) {
# determine method if missing
if (has.partial.auc(roc1)) {
# partial auc: go for bootstrap
method <- "bootstrap"
}
else if (smoothing.args$roc1$smooth || smoothing.args$roc2$smooth) {
# smoothing in one or both: bootstrap
method <- "bootstrap"
}
else if (roc1$direction != roc2$direction) {
# delong doesn't work well with opposite directions (will report high significance if roc1$auc and roc2$auc are similar and high)
method <- "bootstrap"
}
else {
method <- "delong"
}
}
else {
method <- match.arg(method)
if (method == "delong") {
# delong NA to pAUC: warn + change
if (has.partial.auc(roc1) || has.partial.auc(roc2)) {
stop("DeLong's test is not supported for partial AUC. Use method=\"bootstrap\" instead.")
}
if (smoothing.args$roc1$smooth || smoothing.args$roc2$smooth) {
stop("DeLong's test is not supported for smoothed ROCs. Use method=\"bootstrap\" instead.")
}
if (roc1$direction != roc2$direction)
warning("DeLong's test should not be applied to ROC curves with a different direction.")
# Check if conf.level is specified correctly. This is currently
# only used for the delong paired method, which is why it lives
# here for now.
if (!is.numeric(conf.level)) {
stop("conf.level must be numeric between 0 and 1.")
} else if (0 > conf.level | 1 < conf.level) {
stop("conf.level must be between 0 and 1.")
}
}
else if (method == "venkatraman") {
if (has.partial.auc(roc1))
stop("Partial AUC is not supported for Venkatraman's test.")
if (smoothing.args$roc1$smooth || smoothing.args$roc2$smooth)
stop("Venkatraman's test is not supported for smoothed ROCs")
if (roc1$direction != roc2$direction)
warning("Venkatraman's test should not be applied to ROC curves with different directions.")
if (alternative != "two.sided") {
stop("Only two-sided tests are available for Venkatraman.")
}
}
}
# Prepare the return value htest
if (smoothing.args$roc1$smooth)
estimate <- do.call("smooth.roc", c(list(roc=roc1), smoothing.args$roc1))$auc
else
estimate <- roc1$auc
if (smoothing.args$roc2$smooth)
estimate <- c(estimate, do.call("smooth.roc", c(list(roc=roc2), smoothing.args$roc2))$auc)
else
estimate <- c(estimate, roc2$auc)
if (identical(attr(roc1$auc, "partial.auc"), FALSE)) {
nest <- paste(ifelse(smoothing.args$roc1$smooth, "Smoothed ", ""), "AUC of roc1", sep="")
}
else {
nest <- paste(ifelse (attr(roc1$auc, "partial.auc.correct"), "Corrected ", ""),
ifelse (smoothing.args$roc1$smooth, "Smoothed ", ""),
"pAUC (", attr(roc1$auc, "partial.auc")[1], "-", attr(roc1$auc, "partial.auc")[2], " ", attr(roc1$auc, "partial.auc.focus"),
") of roc1", sep="")
}
if (identical(attr(roc2$auc, "partial.auc"), FALSE)) {
nest <- c(nest, paste(ifelse(smoothing.args$roc2$smooth, "Smoothed ", ""), "AUC of roc2", sep=""))
}
else {
nest <- c(nest, paste(ifelse (attr(roc2$auc, "partial.auc.correct"), "Corrected ", ""),
ifelse (smoothing.args$roc2$smooth, "Smoothed ", ""),
"pAUC (", attr(roc2$auc, "partial.auc")[1], "-", attr(roc2$auc, "partial.auc")[2], " ", attr(roc2$auc, "partial.auc.focus"),
") of roc2", sep=""))
}
nest <- sub("Corrected Smoothed", "Corrected smoothed", nest) # no upper on smoothed if corrected.
names(estimate) <- nest
null.value <- 0
names(null.value) <- "difference in AUC"
htest <- list(
alternative = alternative,
data.names = data.names,
estimate = estimate,
null.value = null.value
)
class(htest) <- "htest"
if (method == "delong") {
if (paired) {
delong.calcs <- delong.paired.calculations(roc1, roc2)
stat <- delong.paired.test(delong.calcs)
stat.ci <- ci_delong_paired(delong.calcs, conf.level)
names(stat) <- "Z"
htest$statistic <- stat
htest$method <- "DeLong's test for two correlated ROC curves"
htest$conf.int <- c(stat.ci$lower, stat.ci$upper)
attr(htest$conf.int, "conf.level") <- stat.ci$level
if (alternative == "two.sided")
pval <- 2*pnorm(-abs(stat))
else if (alternative == "greater")
pval <- pnorm(-stat)
else
pval <- pnorm(stat)
htest$p.value <- pval
}
else {
stats <- delong.unpaired.test(roc1, roc2)
stat <- stats[1]
df <- stats[2]
htest$statistic <- c("D"=stat)
htest$parameter <- c("df"=df)
htest$method <- "DeLong's test for two ROC curves"
if (alternative == "two.sided")
pval <- 2*pt(-abs(stat), df=df)
else if (alternative == "greater")
pval <- pt(-stat, df=df)
else
pval <- pt(stat, df=df)
htest$p.value <- pval
}
}
else if (method == "venkatraman") {
if(inherits(progress, "list"))
progress <- roc_utils_get_progress_bar(progress, title="Venkatraman ROC test", label="Permutations in progress...", ...)
if (paired) {
stats <- venkatraman.paired.test(roc1, roc2, boot.n, ties.method, progress, parallel)
htest$method <- "Venkatraman's test for two paired ROC curves"
}
else {
stats <- venkatraman.unpaired.test(roc1, roc2, boot.n, ties.method, progress, parallel)
htest$method <- "Venkatraman's test for two unpaired ROC curves"
}
stat <- stats[[1]]
names(stat) <- "E"
htest$statistic <- stat
parameter <- c(boot.n)
names(parameter) <- "boot.n"
htest$parameter <- parameter
pval <- sum(stats[[2]]>=stats[[1]])/boot.n
htest$p.value <- pval
names(htest$null.value) <- "difference in at least one ROC operating point"
htest$estimate <- NULL # AUC not relevant in venkatraman
}
else { # method == "bootstrap" or "sensitivity" or "specificity"
# Check if called with density.cases or density.controls
if (is.null(smoothing.args) || is.numeric(smoothing.args$density.cases) || is.numeric(smoothing.args$density.controls))
stop("Cannot compute the statistic on ROC curves smoothed with numeric density.controls and density.cases.")
if(inherits(progress, "list"))
progress <- roc_utils_get_progress_bar(progress, title="Bootstrap ROC test", label="Bootstrap in progress...", ...)
if (method == "specificity") {
if (! is.numeric(specificity) || length(specificity) != 1) {
stop("Argument 'specificity' must be numeric of length 1 for a specificity test.")
}
stat <- bootstrap.test(roc1, roc2, "sp", specificity, paired, boot.n, boot.stratified, smoothing.args, progress, parallel)
if (paired)
htest$method <- "Specificity test for two correlated ROC curves"
else
htest$method <- "Specificity test for two ROC curves"
names(htest$null.value) <- sprintf("difference in sensitivity at %s specificity",
specificity)
}
else if (method == "sensitivity") {
if (! is.numeric(sensitivity) || length(sensitivity) != 1) {
stop("Argument 'sensitivity' must be numeric of length 1 for a sensitivity test.")
}
stat <- bootstrap.test(roc1, roc2, "se", sensitivity, paired, boot.n, boot.stratified, smoothing.args, progress, parallel)
if (paired)
htest$method <- "Sensitivity test for two correlated ROC curves"
else
htest$method <- "Sensitivity test for two ROC curves"
names(htest$null.value) <- sprintf("difference in specificity at %s sensitivity",
sensitivity)
}
else {
stat <- bootstrap.test(roc1, roc2, "boot", NULL, paired, boot.n, boot.stratified, smoothing.args, progress, parallel)
if (paired)
htest$method <- "Bootstrap test for two correlated ROC curves"
else
htest$method <- "Bootstrap test for two ROC curves"
}
stat <- as.vector(stat) # remove auc attributes
names(stat) <- "D"
htest$statistic <- stat
parameter <- c(boot.n, boot.stratified)
names(parameter) <- c("boot.n", "boot.stratified")
htest$parameter <- parameter
if (alternative == "two.sided")
pval <- 2*pnorm(-abs(stat))
else if (alternative == "greater")
pval <- pnorm(-stat)
else
pval <- pnorm(stat)
htest$p.value <- pval
}
htest$roc1 <- roc1
htest$roc2 <- roc2
# Remove name from p value
htest$p.value <- unname(htest$p.value)
# Restore smoothing if necessary
if (smoothing.args$roc1$smooth)
htest$roc1 <- do.call("smooth.roc", c(list(roc=roc1), smoothing.args$roc1))
if (smoothing.args$roc2$smooth)
htest$roc2 <- do.call("smooth.roc", c(list(roc=roc2), smoothing.args$roc2))
return(htest)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.