Nothing
#' Create counts of patterns using regular expressions
#'
#' `step_count()` creates a *specification* of a recipe step that will create a
#' variable that counts instances of a regular expression pattern in text.
#'
#' @inheritParams step_classdist
#' @inheritParams step_pca
#' @inheritParams step_center
#' @inheritParams step_dummy
#' @param ... A single selector function to choose which variable will be
#' searched for the regex pattern. The selector should resolve to a single
#' variable. See [selections()] for more details.
#' @param pattern A character string containing a regular expression (or
#' character string for `fixed = TRUE`) to be matched in the given character
#' vector. Coerced by `as.character` to a character string if possible.
#' @param normalize A logical; should the integer counts be divided by the total
#' number of characters in the string?.
#' @param options A list of options to [gregexpr()] that should not include `x`
#' or `pattern`.
#' @param result A single character value for the name of the new variable. It
#' should be a valid column name.
#' @param input A single character value for the name of the variable being
#' searched. This is `NULL` until computed by [prep()].
#' @template step-return
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `result` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{result}{character, the new column names}
#' \item{id}{character, id of this step}
#' }
#'
#' @template sparse-creation
#'
#' @template case-weights-not-supported
#'
#' @family dummy variable and encoding steps
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' data(covers, package = "modeldata")
#'
#' rec <- recipe(~description, covers) |>
#' step_count(description, pattern = "(rock|stony)", result = "rocks") |>
#' step_count(description, pattern = "famil", normalize = TRUE)
#'
#' rec2 <- prep(rec, training = covers)
#' rec2
#'
#' count_values <- bake(rec2, new_data = covers)
#' count_values
#'
#' tidy(rec, number = 1)
#' tidy(rec2, number = 1)
step_count <- function(
recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
normalize = FALSE,
options = list(),
result = make.names(pattern),
input = NULL,
sparse = "auto",
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("count")
) {
check_string(pattern)
valid_args <- names(formals(grepl))[-(1:2)]
if (any(!(names(options) %in% valid_args))) {
cli::cli_abort(
c(
"x" = "The following elements of {.arg options} are not allowed:",
"*" = "{.val {setdiff(names(options), valid_args)}}.",
"i" = "Valid options are: {.val {valid_args}}."
)
)
}
terms <- enquos(...)
if (length(terms) > 1) {
cli::cli_abort(
c(
x = "For this step, only a single selector can be used.",
i = "The following {length(terms)} selectors were used: \\
{.var {as.character(terms)}}."
)
)
}
add_step(
recipe,
step_count_new(
terms = terms,
role = role,
trained = trained,
pattern = pattern,
normalize = normalize,
options = options,
result = result,
input = input,
sparse = sparse,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_count_new <-
function(
terms,
role,
trained,
pattern,
normalize,
options,
result,
input,
sparse,
keep_original_cols,
skip,
id
) {
step(
subclass = "count",
terms = terms,
role = role,
trained = trained,
pattern = pattern,
normalize = normalize,
options = options,
result = result,
input = input,
sparse = sparse,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_count <- function(x, training, info = NULL, ...) {
col_name <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_name], types = c("string", "factor", "ordered"))
check_string(x$pattern, allow_empty = TRUE, arg = "pattern")
check_string(x$result, allow_empty = FALSE, arg = "result")
check_bool(x$normalize, arg = "normalize")
check_sparse_arg(x$sparse)
check_options(x$options, exclude = c("x", "pattern"))
step_count_new(
terms = x$terms,
role = x$role,
trained = TRUE,
pattern = x$pattern,
normalize = x$normalize,
options = x$options,
input = col_name,
result = x$result,
sparse = x$sparse,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_count <- function(object, new_data, ...) {
col_name <- names(object$input)
check_new_data(col_name, object, new_data)
if (length(col_name) == 0L) {
return(new_data)
}
## sub in options
regex <- expr(
gregexpr(
text = new_data[[col_name]],
pattern = object$pattern,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE
)
)
if (length(object$options) > 0) {
regex <- rlang::call_modify(regex, !!!object$options)
}
new_values <- tibble::tibble(
!!object$result := vapply(eval(regex), counter, integer(1))
)
if (object$normalize) {
totals <- nchar(as.character(new_data[[col_name]]))
new_values[[object$result]] <- new_values[[object$result]] / totals
}
if (sparse_is_yes(object$sparse)) {
if (object$normalize) {
new_values[[object$result]] <- sparsevctrs::as_sparse_double(
new_values[[object$result]]
)
} else {
new_values[[object$result]] <- sparsevctrs::as_sparse_integer(
new_values[[object$result]]
)
}
}
new_values <- check_name(new_values, new_data, object, object$result)
new_data <- vec_cbind(new_data, new_values, .name_repair = "minimal")
new_data <- remove_original_cols(new_data, object, col_name)
new_data
}
counter <- function(x) length(x[x > 0])
#' @export
print.step_count <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Regular expression counts using "
print_step(x$input, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_count <- function(x, ...) {
term_names <- sel2char(x$terms)
p <- length(term_names)
if (is_trained(x)) {
res <- tibble(
terms = term_names,
result = rep(x$result, p)
)
} else {
res <- tibble(
terms = term_names,
result = rep(na_chr, p)
)
}
res$id <- x$id
res
}
#' @export
.recipes_estimate_sparsity.step_count <- function(x, data, ...) {
lapply(1, function(n_lvl) {
c(
n_cols = n_lvl,
sparsity = 0.5
)
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.