Atol | R Documentation |
Computes measure vectorization (e.g. point clouds, persistence diagrams, etc.) after a quantisation step according to the Atol algorithm \insertCiteroyer2021atolrgudhi.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::VectorRepresentationStep
-> Atol
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::VectorRepresentationStep$apply()
rgudhi::VectorRepresentationStep$fit()
rgudhi::VectorRepresentationStep$fit_transform()
rgudhi::VectorRepresentationStep$transform()
new()
The Atol
constructor.
Atol$new( quantiser, weighting_method = c("cloud", "iidproba"), contrast = c("gaussian", "laplacian", "indicator") )
quantiser
An object of class BaseClustering
specifying
any clustering algorithm from the
sklearn.cluster
module. It will be fitted when the $fit()
method is called.
weighting_method
A string specifying the constant generic function
for weighting the measure points. Choices are either "cloud"
or
"iidproba"
. Defaults to "cloud"
, i.e. the measure is seen as a
point cloud. This will have no impact if weights are provided along
with measures all the way, i.e. at $fit()
and $transform()
calls,
through the optional argument sample_weight
.
contrast
A string specifying the constant function for evaluating
proximity of a measure with respect to centers. Choices are either
"gaussian"
or "laplacian"
or "indicator"
. Defaults to
"gaussian"
(see page 3 in
\insertCiteroyer2021atol;textualrgudhi).
An object of class Atol
.
clone()
The objects of this class are cloneable with this method.
Atol$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
km <- KMeans$new(n_clusters = 2, random_state = 202006)
vr <- Atol$new(quantiser = km)
# vr$apply(dgm) # TODO: needs fix in python
vr$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.