MinMaxScaler | R Documentation |
This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.
The transformation is given by:
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min
where min, max = feature_range
.
This transformation is often used as an alternative to zero mean, unit variance scaling.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::BaseScaler
-> MinMaxScaler
new()
The MinMaxScaler class constructor.
MinMaxScaler$new(feature_range = c(0, 1), copy = TRUE, clip = FALSE)
feature_range
A length-2 numeric vector specifying the desired
range of transformed data. Defaults to c(0, 1)
.
copy
A boolean value specifying whether to perform in-place
scaling and avoid a copy (if the input is already a numpy array).
Defaults to TRUE
.
clip
A boolean value specifying whether to clip transformed values
of held-out data to provided feature_range
. Defaults to FALSE
.
An object of class MinMaxScaler.
clone()
The objects of this class are cloneable with this method.
MinMaxScaler$clone(deep = FALSE)
deep
Whether to make a deep clone.
mms <- MinMaxScaler$new()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.