Entropy | R Documentation |
Computes persistence entropy. Persistence entropy is a statistic for persistence diagrams inspired from Shannon entropy. This statistic can also be used to compute a feature vector, called the entropy summary function. See https://arxiv.org/pdf/1803.08304.pdf for more details. Note that a previous implementation was contributed by Manuel Soriano-Trigueros.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::VectorRepresentationStep
-> Entropy
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::VectorRepresentationStep$apply()
rgudhi::VectorRepresentationStep$fit()
rgudhi::VectorRepresentationStep$fit_transform()
rgudhi::VectorRepresentationStep$transform()
new()
The Entropy
constructor.
Entropy$new( mode = c("scalar", "vector"), normalized = TRUE, resolution = 100, sample_range = rep(NA_real_, 2) )
mode
A string specifying which entropy to compute: either
"scalar"
for computing the entropy statistic, or "vector"
for
computing the entropy summary function. Defaults to "scalar"
.
normalized
A boolean value specifying whether to normalize the
entropy summary function. Defaults to TRUE
. Used only if mode == "vector"
.
resolution
An integer value specifying the grid size for the
entropy summary function. Defaults to 100L
. Used only if mode == "vector"
.
sample_range
A length-2 numeric vector specifying the domain for
the entropy summary function, of the form [x_{\min}, x_{\max}]
.
Defaults to rep(NA, 2)
. It is the interval on which samples will be
drawn evenly. If one of the values is NA
, it can be computed from the
persistence diagrams with the $fit()
method. Used only if mode == "vector"
.
An object of class Entropy
.
clone()
The objects of this class are cloneable with this method.
Entropy$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
ent <- Entropy$new()
ent$apply(dgm)
ent$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.