| Entropy | R Documentation |
Computes persistence entropy. Persistence entropy is a statistic for persistence diagrams inspired from Shannon entropy. This statistic can also be used to compute a feature vector, called the entropy summary function. See https://arxiv.org/pdf/1803.08304.pdf for more details. Note that a previous implementation was contributed by Manuel Soriano-Trigueros.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep -> Entropy
rgudhi::PythonClass$get_python_class()rgudhi::PythonClass$set_python_class()rgudhi::SKLearnClass$get_params()rgudhi::SKLearnClass$set_params()rgudhi::VectorRepresentationStep$apply()rgudhi::VectorRepresentationStep$fit()rgudhi::VectorRepresentationStep$fit_transform()rgudhi::VectorRepresentationStep$transform()new()The Entropy constructor.
Entropy$new(
mode = c("scalar", "vector"),
normalized = TRUE,
resolution = 100,
sample_range = rep(NA_real_, 2)
)modeA string specifying which entropy to compute: either
"scalar" for computing the entropy statistic, or "vector" for
computing the entropy summary function. Defaults to "scalar".
normalizedA boolean value specifying whether to normalize the
entropy summary function. Defaults to TRUE. Used only if mode == "vector".
resolutionAn integer value specifying the grid size for the
entropy summary function. Defaults to 100L. Used only if mode == "vector".
sample_rangeA length-2 numeric vector specifying the domain for
the entropy summary function, of the form [x_{\min}, x_{\max}].
Defaults to rep(NA, 2). It is the interval on which samples will be
drawn evenly. If one of the values is NA, it can be computed from the
persistence diagrams with the $fit() method. Used only if mode == "vector".
An object of class Entropy.
clone()The objects of this class are cloneable with this method.
Entropy$clone(deep = FALSE)
deepWhether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
ent <- Entropy$new()
ent$apply(dgm)
ent$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.