| Landscape | R Documentation |
Computes persistence landscapes from a list of persistence diagrams. A persistence landscape is a collection of 1D piecewise-linear functions computed from the rank function associated to the persistence diagram. These piecewise-linear functions are then sampled evenly on a given range and the corresponding vectors of samples are concatenated and returned. See http://jmlr.org/papers/v16/bubenik15a.html for more details.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep -> Landscape
rgudhi::PythonClass$get_python_class()rgudhi::PythonClass$set_python_class()rgudhi::SKLearnClass$get_params()rgudhi::SKLearnClass$set_params()rgudhi::VectorRepresentationStep$apply()rgudhi::VectorRepresentationStep$fit()rgudhi::VectorRepresentationStep$fit_transform()rgudhi::VectorRepresentationStep$transform()new()The Landscape constructor.
Landscape$new( num_landscapes = 5, resolution = 100, sample_range = rep(NA_real_, 2) )
num_landscapesAn integer value specifying the number of piecewise
linear functions to output. Defaults to 5L.
resolutionAn integer value specifying the grid size for the
landscapes. Defaults to 100L.
sample_rangeA length-2 numeric vector specifying the domain for
the entropy summary function, of the form [x_{\min}, x_{\max}].
Defaults to rep(NA, 2). It is the interval on which samples will be
drawn evenly. If one of the values is NA, it can be computed from the
persistence diagrams with the $fit() method.
An object of class Landscape.
clone()The objects of this class are cloneable with this method.
Landscape$clone(deep = FALSE)
deepWhether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
lds <- Landscape$new()
lds$apply(dgm)
lds$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.