Landscape | R Documentation |
Computes persistence landscapes from a list of persistence diagrams. A persistence landscape is a collection of 1D piecewise-linear functions computed from the rank function associated to the persistence diagram. These piecewise-linear functions are then sampled evenly on a given range and the corresponding vectors of samples are concatenated and returned. See http://jmlr.org/papers/v16/bubenik15a.html for more details.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::VectorRepresentationStep
-> Landscape
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::VectorRepresentationStep$apply()
rgudhi::VectorRepresentationStep$fit()
rgudhi::VectorRepresentationStep$fit_transform()
rgudhi::VectorRepresentationStep$transform()
new()
The Landscape
constructor.
Landscape$new( num_landscapes = 5, resolution = 100, sample_range = rep(NA_real_, 2) )
num_landscapes
An integer value specifying the number of piecewise
linear functions to output. Defaults to 5L
.
resolution
An integer value specifying the grid size for the
landscapes. Defaults to 100L
.
sample_range
A length-2 numeric vector specifying the domain for
the entropy summary function, of the form [x_{\min}, x_{\max}]
.
Defaults to rep(NA, 2)
. It is the interval on which samples will be
drawn evenly. If one of the values is NA
, it can be computed from the
persistence diagrams with the $fit()
method.
An object of class Landscape
.
clone()
The objects of this class are cloneable with this method.
Landscape$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
lds <- Landscape$new()
lds$apply(dgm)
lds$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.