KernelRepresentationStep | R Documentation |
Kernel Representation Step
Kernel Representation Step
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> KernelRepresentationStep
apply()
Applies the class on a single persistence diagram and outputs the result.
KernelRepresentationStep$apply(diag1, diag2)
diag1
A 2-column tibble::tibble specifying a persistence diagram.
diag2
A 2-column tibble::tibble specifying a persistence diagram.
A numeric value storing the kernel-induced inner product between the two input diagrams.
fit()
Fits the class on a sample of persistence diagrams.
KernelRepresentationStep$fit(X, y = NULL)
X
A list of 2-column tibble::tibbles specifying a sample of persistence diagrams.
y
An integer vector specifying persistence diagram labels (unused for now).
The class itself invisibly.
transform()
Applies the class on a sample of persistence diagrams.
KernelRepresentationStep$transform(X)
X
A list of 2-column tibble::tibbles specifying a sample of persistence diagrams.
A numeric matrix of shape n_\mathrm{out} \times
n_\mathrm{in}
storing the kernel-induced inner product between the
n_\mathrm{out}
persistence diagrams passed to the $transform()
method and the n_\mathrm{in}
persistence diagrams passed to the
$fit()
method.
fit_transform()
Applies sequentially the $fit()
and $transform()
methods
on a sample of persistence diagrams in a more efficient way than
calling them directly.
KernelRepresentationStep$fit_transform(X, y = NULL)
X
A list of 2-column tibble::tibbles specifying a sample of persistence diagrams.
y
An integer vector specifying persistence diagram labels (unused for now).
A numeric matrix of shape n \times n
storing the
kernel-induced inner product between the n
persistence diagrams
passed to both the $fit()
and $transform()
methods.
clone()
The objects of this class are cloneable with this method.
KernelRepresentationStep$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.