BottleneckDistance: Metrics: Bottleneck Distance

BottleneckDistanceR Documentation

Metrics: Bottleneck Distance

Description

Computes the bottleneck distance matrix from a list of persistence diagrams.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> BottleneckDistance

Methods

Public methods

Inherited methods

Method new()

The BottleneckDistance constructor.

Usage
BottleneckDistance$new(epsilon = NULL, n_jobs = 1)
Arguments
epsilon

A numeric value specifying the absolute (additive) error tolerated on the distance. Defaults to NULL, in which case the smallest positive float is used.

n_jobs

An integer value specifying the number of jobs to use for the computation. Defaults to 1L.

Returns

An object of class BottleneckDistance.


Method clone()

The objects of this class are cloneable with this method.

Usage
BottleneckDistance$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples


X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- BottleneckDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))


rgudhi documentation built on March 31, 2023, 11:38 p.m.