SlicedWassersteinDistance | R Documentation |
Computes the sliced Wasserstein distance matrix from a list of persistence diagrams. The Sliced Wasserstein distance is computed by projecting the persistence diagrams onto lines, comparing the projections with the 1-norm, and finally integrating over all possible lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::MetricStep
-> SlicedWassersteinDistance
new()
The SlicedWassersteinDistance
constructor.
SlicedWassersteinDistance$new(num_directions = 10, n_jobs = 1)
num_directions
An integer value specifying the number of lines
evenly sampled from [-\pi/2,\pi/2]
in order to approximate and
speed up the kernel computation. Defaults to 10L
.
n_jobs
An integer value specifying the number of jobs to use for
the computation. Defaults to 1L
.
An object of class SlicedWassersteinDistance
.
clone()
The objects of this class are cloneable with this method.
SlicedWassersteinDistance$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- SlicedWassersteinDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.