| SlicedWassersteinDistance | R Documentation |
Computes the sliced Wasserstein distance matrix from a list of persistence diagrams. The Sliced Wasserstein distance is computed by projecting the persistence diagrams onto lines, comparing the projections with the 1-norm, and finally integrating over all possible lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> SlicedWassersteinDistance
new()The SlicedWassersteinDistance constructor.
SlicedWassersteinDistance$new(num_directions = 10, n_jobs = 1)
num_directionsAn integer value specifying the number of lines
evenly sampled from [-\pi/2,\pi/2] in order to approximate and
speed up the kernel computation. Defaults to 10L.
n_jobsAn integer value specifying the number of jobs to use for
the computation. Defaults to 1L.
An object of class SlicedWassersteinDistance.
clone()The objects of this class are cloneable with this method.
SlicedWassersteinDistance$clone(deep = FALSE)
deepWhether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- SlicedWassersteinDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.