PersistenceScaleSpaceKernel | R Documentation |
Computes the persistence scale space kernel matrix from a list of persistence diagrams. The persistence scale space kernel is computed by adding the symmetric to the diagonal of each point in each persistence diagram, with negative weight, and then convolving the points with a Gaussian kernel. See https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Reininghaus_A_Stable_Multi-Scale_2015_CVPR_paper.pdf for more details.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::KernelRepresentationStep
-> PersistenceScaleSpaceKernel
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::KernelRepresentationStep$apply()
rgudhi::KernelRepresentationStep$fit()
rgudhi::KernelRepresentationStep$fit_transform()
rgudhi::KernelRepresentationStep$transform()
new()
The PersistenceScaleSpaceKernel
constructor.
PersistenceScaleSpaceKernel$new( bandwidth = 1, kernel_approx = NULL, n_jobs = 1 )
bandwidth
A numeric value specifying the bandwidth of the Gaussian
kernel with which persistence diagrams will be convolved. Defaults to
1.0
.
kernel_approx
A Python class specifying the kernel approximation
class used to speed up computation. Defaults to NULL
. Common kernel
approximations classes can be found in the scikit-learn library
(such as RBFSampler
for instance).
n_jobs
An integer value specifying the number of jobs to use for
the computation. Defaults to 1
.
An object of class PersistenceScaleSpaceKernel
.
clone()
The objects of this class are cloneable with this method.
PersistenceScaleSpaceKernel$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pssk <- PersistenceScaleSpaceKernel$new()
pssk$apply(dgm, dgm)
pssk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.