| PersistenceWeightedGaussianKernel | R Documentation |
Computes the persistence weighted Gaussian kernel matrix from a list of persistence diagrams. The persistence weighted Gaussian kernel is computed by convolving the persistence diagram points with weighted Gaussian kernels. See http://proceedings.mlr.press/v48/kusano16.html for more details.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep -> PersistenceWeightedGaussianKernel
rgudhi::PythonClass$get_python_class()rgudhi::PythonClass$set_python_class()rgudhi::SKLearnClass$get_params()rgudhi::SKLearnClass$set_params()rgudhi::KernelRepresentationStep$apply()rgudhi::KernelRepresentationStep$fit()rgudhi::KernelRepresentationStep$fit_transform()rgudhi::KernelRepresentationStep$transform()new()The PersistenceWeightedGaussianKernel constructor.
PersistenceWeightedGaussianKernel$new( bandwidth = 1, weight = ~1, kernel_approx = NULL, n_jobs = 1 )
bandwidthA numeric value specifying the bandwidth of the Gaussian
kernel with which persistence diagrams will be convolved. Defaults to
1.0.
weightA function or a formula coercible into a function via
rlang::as_function() specifying the weight function for the
persistence diagram points. Defaults to the constant function ~ 1.
This function must be defined on 2D points, i.e. lists or arrays of the
form [p_x,p_y].
kernel_approxA Python class specifying the kernel approximation
class used to speed up computation. Defaults to NULL. Common kernel
approximations classes can be found in the scikit-learn library
(such as RBFSampler for instance).
n_jobsAn integer value specifying the number of jobs to use for
the computation. Defaults to 1.
An object of class PersistenceWeightedGaussianKernel.
clone()The objects of this class are cloneable with this method.
PersistenceWeightedGaussianKernel$clone(deep = FALSE)
deepWhether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pwgk <- PersistenceWeightedGaussianKernel$new()
pwgk$apply(dgm, dgm)
pwgk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.