PersistenceWeightedGaussianKernel | R Documentation |
Computes the persistence weighted Gaussian kernel matrix from a list of persistence diagrams. The persistence weighted Gaussian kernel is computed by convolving the persistence diagram points with weighted Gaussian kernels. See http://proceedings.mlr.press/v48/kusano16.html for more details.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::KernelRepresentationStep
-> PersistenceWeightedGaussianKernel
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::KernelRepresentationStep$apply()
rgudhi::KernelRepresentationStep$fit()
rgudhi::KernelRepresentationStep$fit_transform()
rgudhi::KernelRepresentationStep$transform()
new()
The PersistenceWeightedGaussianKernel
constructor.
PersistenceWeightedGaussianKernel$new( bandwidth = 1, weight = ~1, kernel_approx = NULL, n_jobs = 1 )
bandwidth
A numeric value specifying the bandwidth of the Gaussian
kernel with which persistence diagrams will be convolved. Defaults to
1.0
.
weight
A function or a formula coercible into a function via
rlang::as_function()
specifying the weight function for the
persistence diagram points. Defaults to the constant function ~ 1
.
This function must be defined on 2D points, i.e. lists or arrays of the
form [p_x,p_y]
.
kernel_approx
A Python class specifying the kernel approximation
class used to speed up computation. Defaults to NULL
. Common kernel
approximations classes can be found in the scikit-learn library
(such as RBFSampler
for instance).
n_jobs
An integer value specifying the number of jobs to use for
the computation. Defaults to 1
.
An object of class PersistenceWeightedGaussianKernel
.
clone()
The objects of this class are cloneable with this method.
PersistenceWeightedGaussianKernel$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pwgk <- PersistenceWeightedGaussianKernel$new()
pwgk$apply(dgm, dgm)
pwgk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.