| PersistenceFisherKernel | R Documentation |
Computes the persistence Fisher kernel matrix from a list of persistence diagrams. The persistence Fisher kernel is computed by exponentiating the corresponding persistence Fisher distance with a Gaussian kernel. See papers.nips.cc/paper/8205-persistence-fisher-kernel-a-riemannian-manifold-kernel-for-persistence-diagrams for more details.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep -> PersistenceFisherKernel
rgudhi::PythonClass$get_python_class()rgudhi::PythonClass$set_python_class()rgudhi::SKLearnClass$get_params()rgudhi::SKLearnClass$set_params()rgudhi::KernelRepresentationStep$apply()rgudhi::KernelRepresentationStep$fit()rgudhi::KernelRepresentationStep$fit_transform()rgudhi::KernelRepresentationStep$transform()new()The PersistenceFisherKernel constructor.
PersistenceFisherKernel$new( bandwidth_fisher = 1, bandwidth = 1, kernel_approx = NULL, n_jobs = 1 )
bandwidth_fisherA numeric value specifying the bandwidth of the
Gaussian kernel used to turn persistence diagrams into probability
distributions by the PersistenceFisherDistance class. Defaults to
1.0.
bandwidthA numeric value specifying the bandwidth of the Gaussian
kernel applied to the persistence Fisher distance. Defaults to 1.0.
kernel_approxA Python class specifying the kernel approximation
class used to speed up computation. Defaults to NULL. Common kernel
approximations classes can be found in the scikit-learn library
(such as RBFSampler for instance).
n_jobsAn integer value specifying the number of jobs to use for
the computation. Defaults to 1.
An object of class PersistenceFisherKernel.
clone()The objects of this class are cloneable with this method.
PersistenceFisherKernel$clone(deep = FALSE)
deepWhether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pfk <- PersistenceFisherKernel$new()
pfk$apply(dgm, dgm)
pfk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.