PersistenceFisherKernel | R Documentation |
Computes the persistence Fisher kernel matrix from a list of persistence diagrams. The persistence Fisher kernel is computed by exponentiating the corresponding persistence Fisher distance with a Gaussian kernel. See papers.nips.cc/paper/8205-persistence-fisher-kernel-a-riemannian-manifold-kernel-for-persistence-diagrams for more details.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::KernelRepresentationStep
-> PersistenceFisherKernel
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::KernelRepresentationStep$apply()
rgudhi::KernelRepresentationStep$fit()
rgudhi::KernelRepresentationStep$fit_transform()
rgudhi::KernelRepresentationStep$transform()
new()
The PersistenceFisherKernel
constructor.
PersistenceFisherKernel$new( bandwidth_fisher = 1, bandwidth = 1, kernel_approx = NULL, n_jobs = 1 )
bandwidth_fisher
A numeric value specifying the bandwidth of the
Gaussian kernel used to turn persistence diagrams into probability
distributions by the PersistenceFisherDistance
class. Defaults to
1.0
.
bandwidth
A numeric value specifying the bandwidth of the Gaussian
kernel applied to the persistence Fisher distance. Defaults to 1.0
.
kernel_approx
A Python class specifying the kernel approximation
class used to speed up computation. Defaults to NULL
. Common kernel
approximations classes can be found in the scikit-learn library
(such as RBFSampler
for instance).
n_jobs
An integer value specifying the number of jobs to use for
the computation. Defaults to 1
.
An object of class PersistenceFisherKernel
.
clone()
The objects of this class are cloneable with this method.
PersistenceFisherKernel$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pfk <- PersistenceFisherKernel$new()
pfk$apply(dgm, dgm)
pfk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.