DiagramScaler: Preprocessing: Diagram Scaler

DiagramScalerR Documentation

Preprocessing: Diagram Scaler

Description

This is a class for preprocessing persistence diagrams with a given list of scalers, such as those included in scikit-learn.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::PreprocessingStep -> DiagramScaler

Methods

Public methods

Inherited methods

Method new()

The DiagramScaler constructor.

Usage
DiagramScaler$new(use = FALSE, scalers = list())
Arguments
use

A boolean value specifying whether to use the class. Defaults to FALSE.

scalers

A list of scalers to be fit on the persistence diagrams. Defaults to list() which is an empty list. Each element of the list is a length-2 base::list with two elements:

  • the first one is a list of coordinates;

  • the second one is an instantiated scaler class. Choices are MaxAbsScaler, MinMaxScaler, RobustScaler or StandardScaler.

Returns

An object of class DiagramScaler.


Method clone()

The objects of this class are cloneable with this method.

Usage
DiagramScaler$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples


X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramScaler$new()
ds$apply(dgm)
ds$fit_transform(list(dgm))


rgudhi documentation built on March 31, 2023, 11:38 p.m.