| PersistenceSlicedWassersteinKernel | R Documentation |
Computes the sliced Wasserstein kernel matrix from a list of persistence diagrams. The sliced Wasserstein kernel is computed by exponentiating the corresponding sliced Wasserstein distance with a Gaussian kernel. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep -> PersistenceSlicedWassersteinKernel
rgudhi::PythonClass$get_python_class()rgudhi::PythonClass$set_python_class()rgudhi::SKLearnClass$get_params()rgudhi::SKLearnClass$set_params()rgudhi::KernelRepresentationStep$apply()rgudhi::KernelRepresentationStep$fit()rgudhi::KernelRepresentationStep$fit_transform()rgudhi::KernelRepresentationStep$transform()new()The PersistenceSlicedWassersteinKernel constructor.
PersistenceSlicedWassersteinKernel$new( num_directions = 10, bandwidth = 1, n_jobs = 1 )
num_directionsAn integer value specifying the number of lines
evenly sampled from [-\pi/2,\pi/2] in order to approximate and
speed up the kernel computation. Defaults to 10L.
bandwidthA numeric value specifying the bandwidth of the Gaussian
kernel with which persistence diagrams will be convolved. Defaults to
1.0.
n_jobsAn integer value specifying the number of jobs to use for
the computation. Defaults to 1.
An object of class PersistenceSlicedWassersteinKernel.
clone()The objects of this class are cloneable with this method.
PersistenceSlicedWassersteinKernel$clone(deep = FALSE)
deepWhether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pswk <- PersistenceSlicedWassersteinKernel$new()
pswk$apply(dgm, dgm)
pswk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.