PersistenceSlicedWassersteinKernel | R Documentation |
Computes the sliced Wasserstein kernel matrix from a list of persistence diagrams. The sliced Wasserstein kernel is computed by exponentiating the corresponding sliced Wasserstein distance with a Gaussian kernel. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::KernelRepresentationStep
-> PersistenceSlicedWassersteinKernel
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::KernelRepresentationStep$apply()
rgudhi::KernelRepresentationStep$fit()
rgudhi::KernelRepresentationStep$fit_transform()
rgudhi::KernelRepresentationStep$transform()
new()
The PersistenceSlicedWassersteinKernel
constructor.
PersistenceSlicedWassersteinKernel$new( num_directions = 10, bandwidth = 1, n_jobs = 1 )
num_directions
An integer value specifying the number of lines
evenly sampled from [-\pi/2,\pi/2]
in order to approximate and
speed up the kernel computation. Defaults to 10L
.
bandwidth
A numeric value specifying the bandwidth of the Gaussian
kernel with which persistence diagrams will be convolved. Defaults to
1.0
.
n_jobs
An integer value specifying the number of jobs to use for
the computation. Defaults to 1
.
An object of class PersistenceSlicedWassersteinKernel
.
clone()
The objects of this class are cloneable with this method.
PersistenceSlicedWassersteinKernel$clone(deep = FALSE)
deep
Whether to make a deep clone.
Mathieu Carrière
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pswk <- PersistenceSlicedWassersteinKernel$new()
pswk$apply(dgm, dgm)
pswk$fit_transform(list(dgm))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.