R/IKFA.r

Defines functions rand.t.test.IKFA screeplot.IKFA coef.IKFA residuals.IKFA fitted.IKFA plot.IKFA summary.IKFA performance.IKFA print.IKFA predict.IKFA crossval.IKFA predict.internal.IKFA communality IKFA.fit IKFA

Documented in coef.IKFA communality crossval.IKFA fitted.IKFA IKFA IKFA.fit performance.IKFA plot.IKFA predict.IKFA predict.internal.IKFA print.IKFA rand.t.test.IKFA residuals.IKFA screeplot.IKFA summary.IKFA

IKFA <- function(y, x, nFact = 5, IsPoly = FALSE, IsRot = TRUE, ccoef = 1:nFact, check.data=TRUE, lean=FALSE, ...)
{
  if (check.data) {
    if (any(apply(y, 1, sum) < 1.0E-8))
       stop(paste("Species data have zero abundances for the following rows:", paste(which(apply(y, 1, sum) < 1.0E-8), collapse=",")))
    if (any(apply(y, 2, sum) < 1.0E-8))
       stop(paste("Species data have zero abundances for the following columns:", paste(which(apply(y, 2, sum) < 1.0E-8), collapse=",")))
  }
  nFact <- max(nFact, max(ccoef))
  fit <- IKFA.fit(y=y, x=x, nFact=nFact, IsPoly=IsPoly, IsRot=IsRot, ccoef=ccoef)
  xHat <- predict.internal.IKFA(object=fit, y=y, lean=lean, ...) 
  call.fit <- as.call(list(quote(IKFA.fit), y=quote(y), x=quote(x), nFact=nFact, IsPoly=IsPoly, ccoef=ccoef, lean=FALSE))
  call.print <- match.call()
  result <- c(fit, list(fitted.values=xHat, call.fit=call.fit, call.print=call.print, x=x))
  result$cv.summary <- list(cv.method="none")
	if (!lean) 
	   result$y <- y
  class(result) <- "IKFA" 
  result
}

IKFA.fit <- function(y, x, nFact = 5, IsPoly = FALSE, IsRot = TRUE, ccoef = 1:nFact, lean=FALSE)
{ 
  nFact <- max(nFact, max(ccoef))
  y <- as.matrix(y)
	W <- y/sqrt(apply(y * y, 1, FUN = sum))
	e <- eigen(crossprod(W, W), symmetric=TRUE)
	V <- as.matrix(e$vectors[, 1:nFact])
  rownames(V) <- colnames(y)
	U <- W %*% V
#  VRot <- rotate (V, rotation="varimax", normalize=F)$rmat
  VRot=NULL
	if (IsRot) {
     VRot <- varimax (V, normalize=FALSE)$loadings
     VRot <- VRot[, 1:nFact]
     rownames(VRot) <- colnames(y)
     URot <- W %*% VRot
	   U2 <- URot
  } else {
     URot=NULL
     U2 <- U
  }
  U2 <- U2[, ccoef, drop=FALSE]
  regr <- vector("list", ncol(U2))
	for (i in 1:ncol(U2)){
	 if (IsPoly) {
    	rgr <- lm (x ~ poly(U2[, 1:i, drop=FALSE], degree=2, raw=TRUE))
    }
    else {
      rgr <- lm (x ~ U2[, 1:i, drop=FALSE])
    }
    regr[[i]] <- rgr
  }
	comm <- apply((U)^2, 1, sum)
	result <- list("score" = U, "V" = V, "score.rot"=URot, "VRot"=VRot, "comm" = comm, eig=e, "regr" = regr, "Rotated" = IsRot, "IsPoly" = IsPoly, nFact=nFact, ccoef=ccoef)
	result
}

communality <- function(object, y)
{
  y <- as.matrix(y)
	n <- nrow(y)
	W <- y/sqrt(apply(y * y, 1, FUN = sum))
  U <- W %*% object$V
	if (object$Rotated) {
    	U <- W %*% object$VRot
  }
  apply((U)^2, 1, sum)
}

predict.internal.IKFA <- function(object, y, lean=FALSE, ...)
{
  y <- as.matrix(y)
	n <- nrow(y)
	W <- y/sqrt(apply(y * y, 1, FUN = sum))
	if (object$Rotated) {
    	U <- W %*% object$VRot
  } else {
    U <- W %*% object$V
  }
  nFact <- max(object$ccoef)
  xHat <- matrix(NA, nrow=nrow(y), ncol=length(object$ccoef))
	U2 <- U[, object$ccoef, drop=FALSE]
  for (i in 1:length(object$ccoef)) {
    if (object$IsPoly) {
      # workaround for bug in poly when called with matrix with one row
      if (nrow(U2)==1) {
        U2 <- rbind(U2, U2)
        tmp <- cbind(rep(1, n), poly(U2[, 1:i, drop=FALSE], degree=2, raw=TRUE)) %*% object$regr[[i]]$coefficients
        xHat[, i] <- tmp[1, ]
      } else {
        xHat[, i] <- cbind(rep(1, n), poly(U2[, 1:i, drop=FALSE], degree=2, raw=TRUE)) %*% object$regr[[i]]$coefficients
      }
    }
    else {
      xHat[, i] <- cbind(rep(1, n), U2[, 1:i, drop=FALSE]) %*% object$regr[[i]]$coefficients
    }
  }
  rownames(xHat) <- rownames(y)
  colnames(xHat) <- paste("Fact", sprintf("%02d", object$ccoef), sep="")
  xHat
}

crossval.IKFA <- function(object, cv.method="loo", verbose=TRUE, ngroups=10, nboot=100, h.cutoff=0, h.dist=NULL, ...) {
  .crossval(object=object, cv.method=cv.method, verbose=verbose, ngroups=ngroups, nboot=nboot, h.cutoff=h.cutoff, h.dist=h.dist, ...)
}

predict.IKFA <- function(object, newdata=NULL, sse=FALSE, nboot=100, match.data=TRUE, verbose=TRUE, ...) {
  .predict(object=object, newdata=newdata, sse=sse, nboot=nboot, match.data=match.data, verbose=verbose, ...)
}

print.IKFA <- function(x, ...) 
{
  cat("\n")
  cat("Method : Imbrie & Kipp Factor Analysis\n")
  cat("Call   : ")
  cat(paste(deparse(x$call.print), "\n\n"))
  cat(paste("No. samples        :", length(x$x), "\n"))
  cat(paste("No. species        :", nrow(x$V), "\n"))
  .print.crossval(x)
  cat("\nPerformance:\n")
  .print.performance(x)
  cat("\n")
}

performance.IKFA <- function(object, ...) {
  .performance(object, ...)
}

summary.IKFA <- function(object, full=FALSE, ...) 
{
  print(object, ...)
  if (object$cv.summary$cv.method == "none")
    fitted <- as.data.frame(object$fitted.values)     
  else
    fitted <- as.data.frame(object$fitted.values, object$predicted)     
  cat("\nFitted values\n")
  if (full) {
     print(fitted)
  } else {
     print(dot(fitted))
  }
}

plot.IKFA <- function(x, resid=FALSE, xval=FALSE, nFact=max(x$ccoef), xlab="", ylab="", ylim=NULL, xlim=NULL, add.ref=TRUE, add.smooth=FALSE, ...) {
  if (xval & x$cv.summary$cv.method=="none")
     stop("IKFA model does not have cross validation estimates")
  xx <- x$x
  if (resid) {
     if (xval) {
       yy <- x$predicted[, nFact] - x$x
     } else {
       yy <- residuals(x)[, nFact]
     }
  } else {
     if (xval) {
        yy <- x$predicted[, nFact]
      }  else {
       yy <- x$fitted.values[, nFact]
      }
  }
  if (missing(ylim)) {
     if (resid) {
       ylim <- range(yy)
     } else {
       ylim <- range(yy, x$x)
     }
  }
  if (missing(xlim))
     xlim <- range(xx, x$x)
  plot(xx, yy, ylim=ylim, xlim=xlim, xlab=xlab, ylab=ylab, las=1, ...)
  if (add.ref) {
     if (resid)
       abline(h=0, col="grey")
     else
       abline(0,1, col="grey")
  }
  if (add.smooth) {
     lines(lowess(xx, yy), col="red")
  }
}

fitted.IKFA <- function(object, ...) {
  object$fitted.values
}

residuals.IKFA <- function(object, cv=FALSE, ...) {
  if (cv == FALSE)
     return (object$x - object$fitted.values)
  else {
     if (object$cv.summary$cv.method == "none")
        stop("Object does not contain cross validation results")
     return (object$residuals.cv)
  }
}

coef.IKFA <- function(object, ...) {
  object$V
}

screeplot.IKFA <- function(x, rand.test=TRUE, ...) {
  if (x$cv.summary$cv.method=="none")
     stop("IKFA model does not have cross validation estimates")
  summ <- performance(x)
  yR <- range(summ$object[, "RMSE"], summ$crossval[, "RMSE"])
  oldmar <- par("mar")
  if (rand.test) {
    mm <- oldmar
    mm[4] <- mm[4] * 2
    par(mar=mm)
  }
  plot(1:length(x$ccoef), summ$object[, "RMSE"], type="b", ylim=yR, col="black", axes=FALSE, xlab="Number of factors", ylab="RMSE")
  axis(2, las=1)
  axis(1, at=1:length(x$ccoef), labels=1:length(x$ccoef))
  box()
  lines(1:length(x$ccoef), summ$crossval[, "RMSE"], type="b", col="red")
  args <- names(as.list(match.call()))
  if ("main" %in% args) 
     title(...)
  else 
     title(main=substitute(x))
  ncomp <- nrow(summ$crossval)
  if (rand.test) {
    res <- rand.t.test(x, ...)
    rY <- range(pretty(res[-1, "delta.RMSE"]), na.rm=TRUE)
    us <- par("usr")
    us[3] <- rY[1]
    us[4] <- rY[2]
    par(usr=us)
    axis(4, las=1)
    lines(1:ncomp, res[, "delta.RMSE"], type="b", col="blue")
    mtext("% change in RMSE", 4, line=2)
    text(1:ncomp, res[, "delta.RMSE"], sprintf("%.3f", res[, "p"], 3), pos=2, xpd=NA, cex=0.8, col="blue") 
    legend("bottomleft", c("model RMSE", "x-val RMSE", "% change RMSE"), lty=1, col=c("black", "red", "blue"))
    par(mar=oldmar)
    invisible(res)
  }
  else  
    legend("topright", c("model", "x-val"), lty=1, col=c("black", "red"))
}

rand.t.test.IKFA <- function(object, n.perm=999, ...) 
{ 
  if (object$cv.summary$cv.method=="none")
     stop("Can only perform a randomisation t-test on a cross-validated model.")
  p <- performance(object)
  ncomp <- nrow(p$crossval)
  if (ncomp < 2)
     stop("Only one factor - nothing to test.")
  delta <- diff(p$crossval[, 1]) / p$crossval[1:(ncomp-1)] * 100
  e <- object$residuals.cv
  t.res <- vector("numeric",ncomp)
  t.res[] <- NA
  for (i in 2:ncomp) {
    d <- e[, i-1]^2 - e[, i]^2
    t.obs <- mean(d, na.rm=TRUE)
    t.sum <- 0
    for (j in 1:n.perm) {
      rnd <- sample(c(TRUE, FALSE), 100, replace=TRUE)
      d2 <- ifelse(rnd, abs(d), -abs(d))
      t <- mean(d2, na.rm=TRUE)
      if (t >= t.obs)
         t.sum <- t.sum + 1
    }
    t.res[i] <- t.sum / (n.perm+1)
  }
  result <- cbind(p$crossval, delta.RMSE=c(NA, delta), p=t.res)
  result
}

Try the rioja package in your browser

Any scripts or data that you put into this service are public.

rioja documentation built on Sept. 26, 2024, 5:07 p.m.