R/stan_plot_helpers.R

Defines functions .treedepth_ndivergent_hist .p_hist .sampler_param_vs_sampler_param_violin .sampler_param_vs_param .reshape_df .sampler_param_df .sampler_params_post_warmup .max_td .nuts_args_check .nuts_return .rhat_neff_mcse_hist .ac_plot_data_multi .ac_plot_data .ac_fun color_vector_chain color_vector .remove_udiag_pars .upars .get_stan_params .make_plot_data .reshape_sample .vb_check .mode_check .check_object .get_stanreg_parnames is.stanfit is.stanreg `%ifNULL%` .add_aesthetics

.add_aesthetics <- function(dots, to_add) {
  # Add some default aesthetics if not included in ...
  # @param dots list(...)
  # @param to_add = character vector
  add_names <- gsub("pt_", "", to_add)
  for (j in seq_along(to_add)) {
    if (!add_names[j] %in% names(dots))
      dots[[add_names[j]]] <- rstanvis_aes_ops(to_add[j])
  }
  dots
}

`%ifNULL%` <- function(x, replacement) {
  if (!is.null(x)) x
  else replacement
}

is.stanreg <- function(x) inherits(x, "stanreg")
is.stanfit <- function(x) inherits(x, "stanfit")

.get_stanreg_parnames <- function(x) {
  stopifnot(is.stanreg(x))
  pars <- rownames(x$stan_summary)
  sel <- grepl("mean_ppd|lp__|log-posterior", pars, ignore.case = TRUE)
  c(pars[!sel], pars[sel])
}

.check_object <- function(object, unconstrain = FALSE) {
  if (is.stanreg(object)) {
    if (object$algorithm == "optimizing")
      stop("Plots not yet available for optimization (algorithm='optimizing')",
           call. = FALSE)
    if (unconstrain)
      stop("Option 'unconstrain' not yet available for stanreg objects.",
           call. = FALSE)
    .mode_check(object$stanfit)
  }
  else .mode_check(object)
}

.mode_check <- function(object) {
  stopifnot(is.stanfit(object))
  if (object@mode == 1L) {
    stop("Stan model '", object@model_name, "' is of mode 'test_grad';\n",
         "sampling is not conducted.\n",
         call. = FALSE)
  } else if (object@mode == 2L) {
    stop("Stan model '", object@model_name, "' does not contain samples.\n",
         call. = FALSE)
  }
  invisible(TRUE)
}

.vb_check <- function(x) {
  if (is.stanreg(x)) x <- x$stanfit
  if (isTRUE(x@stan_args[[1]]$method == "variational"))
    stop("Plot only available for models estimated using MCMC", call. = FALSE)
}

.reshape_sample <- function(x) {
  res <- lapply(seq_along(x), function(i) {
    data.frame(value = unlist(x[[i]], use.names = FALSE),
               parameter = rep(names(x[[i]]), each = length(x[[i]][[1L]])),
               chain = i)
  })
  res <- do.call(rbind, res)
  res$parameter <- as.character(res$parameter)
  res
}
.make_plot_data <- function(object, pars, include = TRUE,
                            inc_warmup = FALSE, unconstrain = FALSE) {

  window <- NULL
  if (is.stanreg(object)) {
    sim <- object$stanfit@sim
  }
  else sim <- object@sim

  nopars <- missing(pars)
  if (is.stanfit(object) && !nopars) {
    if ("log-posterior" %in% pars)
      pars[which(pars == "log-posterior")] <- "lp__"
  }
  if (!include) {
    if (nopars) stop("pars must be specified if include=FALSE.", call. = FALSE)
    else {
      if (is.stanreg(object))
        pars <- setdiff(sim$fnames_oi, pars)
      else
        pars <- setdiff(sim$pars_oi, pars)
    }
  }
  if (nopars) {
    if (is.stanreg(object))
      pars <- names(object$coefficients)
    else
      pars <- setdiff(sim$pars_oi, c("lp__", "log-posterior"))
  }
  else {
    if (!is.stanreg(object))
      pars <- check_pars_second(sim, pars)
  }

  pars <- remove_empty_pars(pars, sim$dims_oi)
  if (unconstrain && "lp__" %in% pars) {
    if (length(pars) == 1L) stop("Can't unconstrain lp__", call. = FALSE)
    pars <- pars[-which(pars == "lp__")]
  }
  tidx <- pars_total_indexes(sim$pars_oi,
                             sim$dims_oi,
                             sim$fnames_oi,
                             pars)
  tidx <- lapply(tidx, function(x) attr(x, "row_major_idx"))
  tidx <- unlist(tidx, use.names = FALSE)
  num_plots <- length(tidx)

  if (nopars && num_plots > 10) {
    # if pars is not specified then default to showing 10 of the parameters
    tidx <- tidx[1:10]
    message("'pars' not specified. Showing first 10 parameters by default.")
  }

  if (!is.null(window)) {
    window <- sort(window)
    if (window[1] < 1) window[1] <- 1
    if (window[1] > sim$iter[1])
      stop("wrong specification of argument window", call. = FALSE)
    if (is.na(window[2]) || window[2] > sim$iter[1])
      window[2] <- sim$iter[1]
  } else {
    window <- c(1, sim$iter[1])
  }
  if ((all(sim$warmup2 == 0) || !inc_warmup) && window[1] <= sim$warmup[1]) {
    window[1] <- sim$warmup[1] + 1
  }
  if (window[1] > window[2]) {
    stop("the given window does not include sample")
  }
  if (window[1] > sim$warmup[1]) inc_warmup <- FALSE

  thin <- sim$thin
  warmup2 <- sim$warmup2[1]
  warmup <- sim$warmup
  start_i <- window[1]
  window_size <- (window[2] - start_i) %/% thin
  id <- seq.int(start_i, by = thin, length.out = window_size)
  start_idx <- (if (warmup2 == 0) (start_i - warmup) else start_i) %/% thin
  if (start_idx < 1)  start_idx <- 1
  idx <- seq.int(start_idx, by = 1, length.out = window_size)

  if (unconstrain) {
    sim$samples <- .upars(object)
    sel <- grep(paste(pars, collapse ="|"), names(sim$samples[[1]]), value = TRUE)
    samp_use <- lapply(sim$samples, function(chain) {
      out <- lapply(chain[names(chain) %in% sel], function(x) x[idx])
      names(out) <- sel
      out
    })
  } else {
    samp_use <- lapply(sim$samples, function(chain) {
      out <- lapply(chain[tidx], function(x) x[idx])
      names(out) <- sim$fnames_oi[tidx]
      out
    })
  }
  nchains <- length(samp_use)

  if (unconstrain) {
    if (is.stanreg(object))
      object <- object$stanfit
    pblock <- .get_stan_params(object)
    pars2 <- unlist(lapply(strsplit(pars, "\\["), "[[", 1))
    not_pblock <- length(setdiff(unique(pars2), pblock))
    if (not_pblock)
      stop("If 'unconstrain' is TRUE only variables declared in the ",
           "'parameters' block can be included in 'pars'.",
           call. = FALSE)
  }

  dat <- .reshape_sample(samp_use)
  dat$iteration <- idx * thin
  dat$chain <- factor(dat$chain)
  fnames <- if (unconstrain)
    names(samp_use[[1]]) else sim$fnames_oi[tidx]
  lp <- which(dat$parameter == "lp__")
  if (!identical(lp, integer(0))) {
    dat$parameter[lp] <- "log-posterior"
    fnames[which(fnames == "lp__")] <- "log-posterior"
  }
  dat$parameter <- factor(dat$parameter, levels = fnames)
  list(samp = dat,
       nchains = nchains,
       nparams = length(fnames),
       warmup = warmup)
}

# get parameter names for parameters block only
.get_stan_params <- function(object) {
  stopifnot(is.stanfit(object))
  params <- grep("context__.vals_r", fixed = TRUE, value = TRUE,
                 x = strsplit(get_cppcode(get_stanmodel(object)), "\n")[[1]])
  params <- sapply(strsplit(params, "\""), FUN = function(x) x[[2]])
  intersect(params, object@model_pars)
}

# unconstrain
.upars <- function(object, permuted = FALSE, inc_warmup = TRUE) {
  if (is.stanreg(object))
    object <- object$stanfit
  pars <- extract(object, permuted = permuted, inc_warmup = inc_warmup)
  nchains <- ncol(pars)
  pn <- dimnames(pars)$parameters
  param_names <- pn[pn != "lp__"]
  sel <- object@model_pars != "lp__"
  skeleton <- create_skeleton(object@model_pars, object@par_dims)[sel]
  upars <- apply(pars, 1:2, FUN = function(theta) {
    unconstrain_pars(object, rstan_relist(theta, skeleton))
  })
  if (length(dim(upars)) == 2) {
    upars <- array(upars, dim = c(dim(upars)[1], dim(upars)[2], 1))
    upars <- aperm(upars, c(2, 3, 1))
  }
  else upars <- aperm(upars, c(3, 1, 2))

  pblock <- .get_stan_params(object)
  mark <- c()
  for (p in pblock) {
    patt <- paste0("^", p, "|^", p, "\\[")
    sel <- grep(patt, param_names)
    if (length(sel))
      mark <- c(mark, sel)
  }
  param_names <- param_names[sort(mark)]

  cpp_code <- strsplit(get_cppcode(get_stanmodel(object)), "\n")[[1]]
  param_names <- .remove_udiag_pars(cpp_code, pblock, param_names)

  lapply(seq_len(nchains), function(chain) {
    x <- upars[chain,, ]
    if (NCOL(x) == 1) x <- rbind(x)
    plist <- lapply(seq_len(nrow(x)), function(param) x[param, ])
    names(plist) <- param_names
    plist
  })
}

.remove_udiag_pars <- function(cpp_code, pblock, param_names) {
  patts <- c("cholesky_corr", "cholesky_cov", "corr_matrix", "cov_matrix")
  for (patt in patts) {
    to_drop <- c()
    for (p in pblock) {
      par_mentions = grep(paste0("(",p,")"), x = cpp_code,
                          fixed = TRUE, value = TRUE)
      if (length(grep(patt, par_mentions))) {
        for (v in grep(p, param_names)) {
          ij <- strsplit(x = param_names[v], split = c("\\[|,|\\]"))[[1]][2:3]
          if (diff(as.numeric(ij)) > -1)
            to_drop = c(v,to_drop)
        }
      }
    }
    if (length(to_drop))
      param_names <- param_names[-to_drop]
  }

  return(param_names)
}

color_vector <- function(n) {
  hues = seq(15, 375, length=n+1)
  hcl(h=hues, l=50, c=50)[1:n]
}
color_vector_chain <- function(n) {
  hues = seq(15, 375, length=n+1)
  hcl(h=hues, l=80, c=50)[1:n]
}



# autocorrelation ---------------------------------------------------------
.ac_fun <- function(x, lag.max, partial = FALSE) {
  if (!partial)
    acf(x, lag.max = lag.max, plot = FALSE)$acf[,, 1L]
  else
    pacf(x, lag.max = lag.max, plot = FALSE)$acf[,, 1L]
}
.ac_plot_data <- function(dat, lags, partial = FALSE) {
  ch <- dat[, grep("chain", colnames(dat))]
  nc <- length(unique(ch))
  ac_list <- tapply(dat$value, INDEX = ch, FUN = .ac_fun, lag.max = lags,
                    partial = partial, simplify = FALSE)
  nl <- if (partial) lags else lags + 1
  ch <- factor(rep(1:nc, each = nl), labels = paste0("chain:", 1:nc))
  ll <- rep(seq(if (partial) 1 else 0, lags), nc)
  data.frame(chains = ch, ac = do.call(c, ac_list), lag = ll)
}
.ac_plot_data_multi <- function(dat, lags, partial = FALSE) {
  ch <- dat[, grep("chain", colnames(dat))]
  nc <- length(unique(ch))
  pa <- factor(dat[, grep("parameter", colnames(dat))])
  np <- length(unique(pa))
  ac_list <- tapply(dat$value, INDEX = list(ch, pa),
                    FUN = .ac_fun, lag.max = lags,
                    partial = partial, simplify = FALSE)
  nl <- if (partial) lags else lags + 1
  ch <- factor(rep(rep(1:nc, each = nl), np), labels = paste0("chain:", 1:nc))
  ll <- rep(seq(if (partial) 1 else 0, lags), nc * np)
  pp <- factor(rep(1:np, each = nc * nl), labels = levels(pa))
  data.frame(parameters = pp, chains = ch, ac = do.call(c, ac_list), lag = ll)
}



# rhat, ess, mcse ---------------------------------------------------------
.rhat_neff_mcse_hist <- function(which = c("rhat", "n_eff_ratio", "mcse_ratio"),
                                 object, pars=NULL, ...) {
  if (is.stanreg(object)) object <- object$stanfit
  thm <- rstanvis_hist_theme()
  dots <- .add_aesthetics(list(...), c("fill", "color"))
  if (which == "n_eff_ratio") {
    lp <- suppressWarnings(get_logposterior(object, inc_warmup = FALSE))
    SS <- prod(length(lp), length(lp[[1L]]))
  }
  if (!is.null(pars)) smry <- summary(object, pars = pars)$summary
  else smry <- summary(object)$summary

  xlab <- switch(which,
                 rhat = "Rhat statistic",
                 n_eff_ratio = "Effective sample size / Sample size",
                 mcse_ratio = "Monte Carlo SE / Posterior SD"
  )
  stat <- switch(which,
                 rhat = smry[, "Rhat"],
                 n_eff_ratio = smry[, "n_eff"] / SS,
                 mcse_ratio = smry[, "se_mean"] / smry[, "sd"]
  )
  df <- data.frame(stat)
  plot_labs <- ggplot2::labs(y = "", x = xlab)
  base <- ggplot2::ggplot(df, ggplot2::aes(x = stat))
  base +
    do.call(ggplot2::geom_histogram, dots) +
    plot_labs +
    thm
}




# nuts stuff --------------------------------------------------------------
.LP_NAME <- "log-posterior"
.LP_LAB <- "Log Posterior"
.METROP_LAB <- "Mean Metrop. Acceptance"
.STEPSIZE_LAB <- "Sampled Step Size"
.TREEDEPTH_LAB <- "Treedepth"
.NDIVERGENT_LAB <- "Divergent"

.NUTS_VLINE_CLR <- "#222222"
.NUTS_FILL <- "#66a7e0"
.NUTS_CLR <- "#006dcc"
.NUTS_PT_CLR <- "#328ad6"
.NDIVERGENT_FILL <- "#ae0001"
.MAXTD_FILL <- "#eeba30"
.NDIVERGENT_CLR <-  "black"
.MAXTD_CLR <- "black"
.DIV_AND_MAXTD_SHAPE <- 21

.nuts_return <- function(graphs, ...) {
  gtable <- do.call(gridExtra::arrangeGrob, c(graphs, ...))
  plot(gtable)
  invisible(graphs)
}

.nuts_args_check <- function(...) {
  if ("par" %in% names(dots <- list(...)))
    stop("'par' argument should not be specified.", call. = FALSE)
}

.max_td <- function(x) {
  if (is.stanreg(x))
    x <- x$stanfit
  cntrl <- x@stan_args[[1L]]$control
  if (is.null(cntrl)) 11
  else {
    max_td <- cntrl$max_treedepth
    if (is.null(max_td)) 11
    else max_td
  }
}

.sampler_params_post_warmup <- function(object, which = "stepsize__", as.df = FALSE) {
  if (which == "divergent__" && utils::packageVersion("rstan") < "2.10")
    which <- "n_divergent__"
  if (is.stanreg(object))
    object <- object$stanfit
  sampler_params <- suppressWarnings(get_sampler_params(object))
  warmup_val <- floor(object@sim$warmup / object@sim$thin)
  warmup_saved <- object@stan_args[[1L]][["save_warmup"]]
  if (!is.null(warmup_saved)) {
    if (!warmup_saved) warmup_val <- 0
  }
  sp <-lapply(1:length(sampler_params), function(i) {
    out <- sampler_params[[i]]
    out <- if (warmup_val == 0) out[, which] else out[-(1:warmup_val), which]
    names(out) <- (warmup_val + 1):(warmup_val + NROW(out))
    out
  })
  if (length(which) == 1L && as.df) .sampler_param_df(sp, warmup_val)
  else sp
}

.sampler_param_df <- function(sp, warmup_val) {
  sp_mat <- do.call("cbind", sp)
  colnames(sp_mat) <- paste0("chain:", 1:ncol(sp_mat))
  sp_mat <- cbind(iterations = (warmup_val+1):(warmup_val + nrow(sp_mat)), sp_mat)
  as.data.frame(sp_mat)
}

.reshape_df <- function(df) {
  iter_col <- grep("iteration", colnames(df))
  mdf <- reshape(df, direction = "long",
                 v.names = "value",
                 varying = list(colnames(df)[-iter_col]),
                 timevar = "variable",
                 times = colnames(df)[-iter_col],
                 idvar = colnames(df)[iter_col])
  rownames(mdf) <- 1:nrow(mdf)
  mdf$variable <- as.factor(mdf$variable)
  attr(mdf, "reshapeLong") <- NULL
  mdf
}

.sampler_param_vs_param <- function(p, sp, divergent = NULL, hit_max_td = NULL,
                                    p_lab, sp_lab, chain = 0, violin = FALSE,
                                    smoother = FALSE, ...) {
  dots <- .add_aesthetics(list(...), c("alpha", "shape"))
  dots$alpha <- 0.5 * dots$alpha
  dots$color <- .NUTS_PT_CLR
  dots$fill <- .NUTS_FILL
  xy_labs <- ggplot2::labs(
    y = if (missing(p_lab)) NULL else p_lab,
    x = if (missing(sp_lab)) NULL else sp_lab
  )
  df <- data.frame(sp = do.call("c", sp), p = c(p))
  if (violin) df$sp <- as.factor(round(df$sp, 4))
  if (!is.null(divergent)) df$divergent <- do.call("c", divergent)
  if (!is.null(hit_max_td)) df$hit_max_td <- do.call("c", hit_max_td)

  base <- ggplot2::ggplot(df, ggplot2::aes(x = .data$sp, y = .data$p)) + xy_labs
  if (chain == 0) {
    if (violin)
      graph <- base + ggplot2::geom_violin(color = .NUTS_CLR, fill = .NUTS_FILL)
    else {
      graph <- base + do.call(ggplot2::geom_point, dots)
      if (smoother) graph <- graph + ggplot2::stat_smooth(se = FALSE)
      if (!is.null(divergent))
        graph <-
          graph + ggplot2::geom_point(
            data = subset(df, divergent == 1),
            mapping = ggplot2::aes(x = .data$sp, y = .data$p),
            color = .NDIVERGENT_CLR,
            fill = .NDIVERGENT_FILL,
            alpha = 0.8,
            size = 3,
            shape = .DIV_AND_MAXTD_SHAPE
          )
      if (!is.null(hit_max_td))
        graph <-
          graph + ggplot2::geom_point(
            data = subset(df, hit_max_td == 1),
            mapping = ggplot2::aes(x = .data$sp, y = .data$p),
            color = .MAXTD_CLR,
            fill = .MAXTD_FILL,
            alpha = 0.8,
            size = 3,
            shape = .DIV_AND_MAXTD_SHAPE
          )
    }
    return(graph)
  }
  chain_data <- data.frame(sp = sp[, chain], p = p[, chain])
  if (!is.null(divergent)) chain_data$div <- divergent[, chain]
  if (!is.null(hit_max_td)) chain_data$hit <- hit_max_td[, chain]
  chain_clr <- color_vector_chain(ncol(sp))[chain]
  chain_fill <- chain_clr
  if (violin) {
    chain_data$sp <- as.factor(round(chain_data$sp, 4))
    graph <- base +
      ggplot2::geom_violin(color = .NUTS_CLR, fill = .NUTS_FILL, ...) +
      ggplot2::geom_violin(
        data = chain_data,
        mapping = ggplot2::aes(x = .data$sp, y = .data$p),
        color = chain_clr,
        fill = chain_fill,
        ...
      )
    return(graph)
  }
  graph <- base + do.call(ggplot2::geom_point, dots)
  if (smoother) graph <- graph + ggplot2::stat_smooth(se = FALSE)
  graph <- graph +
    ggplot2::geom_point(
      data = chain_data,
      mapping = ggplot2::aes(x = .data$sp, y = .data$p),
      color = chain_fill,
      ...
    )
  if (smoother) graph <- graph +
    ggplot2::stat_smooth(
      data = chain_data,
      mapping = ggplot2::aes(x = .data$sp, y = .data$p),
      color = chain_fill,
      se = FALSE
    )
  if (!is.null(divergent))
    graph <- graph +
     ggplot2::geom_point(
      data = chain_data[chain_data$div == 1, , drop = FALSE],
      mapping = ggplot2::aes(x = .data$sp, y = .data$p),
      color = .NDIVERGENT_CLR,
      fill = .NDIVERGENT_FILL,
      size = 3,
      shape = .DIV_AND_MAXTD_SHAPE
     )
  if (!is.null(hit_max_td))
    graph <-
    graph + ggplot2::geom_point(
      data = chain_data[chain_data$hit == 1, , drop = FALSE],
      mapping = ggplot2::aes(x = .data$sp, y = .data$p),
      color = .MAXTD_CLR,
      fill = .MAXTD_FILL,
      size = 3,
      shape = .DIV_AND_MAXTD_SHAPE
    )
  graph
}

.sampler_param_vs_sampler_param_violin <- function(df_x, df_y, lab_x, lab_y,
                                                   chain = 0) {

  xy_labs <- ggplot2::labs(y = lab_y, x = lab_x)
  df <- data.frame(x = do.call("c", df_x), y = do.call("c", df_y))
  df$x <- as.factor(df$x)

  base <- ggplot2::ggplot(df, ggplot2::aes(x = .data$x, y = .data$y)) + xy_labs
  graph <- base + ggplot2::geom_violin(color = .NUTS_CLR, fill = .NUTS_FILL)
  if (chain == 0) return(graph)
  chain_clr <- color_vector_chain(ncol(df_x))[chain]
  chain_fill <- chain_clr
  chain_data <- data.frame(x = as.factor(df_x[, chain]), y = df_y[, chain])
  graph + ggplot2::geom_violin(
    data = chain_data,
    mapping = ggplot2::aes(x = .data$x, y = .data$y),
    color = chain_clr,
    fill = chain_fill,
    alpha = 0.5
  )
}

.p_hist <- function(df, lab, chain = 0, ...) {
  mdf <- .reshape_df(df) # reshape2::melt(df, id.vars = grep("iteration", colnames(df), value = TRUE))
  dots <- .add_aesthetics(list(...), "linewidth")
  dots$binwidth <- diff(range(mdf$value))/30
  dots$fill <- .NUTS_FILL
  dots$color <- .NUTS_CLR
  base <- ggplot2::ggplot(mdf, ggplot2::aes(x = .data$value)) +
    do.call(ggplot2::geom_histogram, dots) +
    ggplot2::labs(x = if (missing(lab)) NULL else lab, y = "")
  if (chain == 0) {
    graph <- base +
      ggplot2::geom_vline(xintercept = mean(mdf$value), color = .NUTS_VLINE_CLR, linewidth = .8) +
      ggplot2::geom_vline(xintercept = median(mdf$value), color = .NUTS_VLINE_CLR, lty = 2, linewidth = 1)
    return(graph)
  }
  chain_data <- mdf[mdf$variable == paste0("chain:",chain), ]
  chain_clr <- color_vector_chain(ncol(df) - 1)[chain]
  chain_fill <- chain_clr
  base + ggplot2::geom_histogram(data = chain_data,
                        binwidth = diff(range(chain_data$value))/30,
                        fill = chain_fill, alpha = 0.5) +
    ggplot2::geom_vline(xintercept = mean(chain_data$value), color = chain_clr, linewidth = .8) +
    ggplot2::geom_vline(xintercept = median(chain_data$value),
               color = chain_clr, lty = 2, linewidth = 1)
}

.treedepth_ndivergent_hist <- function(df_td, df_nd, chain = 0,
                                       divergent = c("All", 0, 1), ...) {
  x_lab <- if (divergent == "All")
    "Treedepth" else paste0("Treedepth (Divergent = ", divergent,")")
  plot_labs <- ggplot2::labs(x = x_lab, y = "")

  mdf_td <- .reshape_df(df_td) #reshape2::melt(df_td, id.vars = grep("iteration", colnames(df_td), value = TRUE))
  mdf_nd <- .reshape_df(df_nd) #reshape2::melt(df_nd, id.vars = grep("iteration", colnames(df_nd), value = TRUE))
  mdf <- cbind(mdf_td, div = mdf_nd$value)
  plot_data <- if (divergent == "All") mdf else mdf[mdf$div == divergent, , drop = FALSE]
  if (nrow(plot_data) == 0) return(NULL)
  count <- NaN

  graph <- ggplot2::ggplot(
    data = plot_data,
    mapping = ggplot2::aes(x = factor(.data$value)),
    na.rm = TRUE
  ) +
    ggplot2::geom_bar(
      mapping = ggplot2::aes(
        y = ggplot2::after_stat(count) / sum(ggplot2::after_stat(count))
      ),
      width = 1, fill = .NUTS_FILL, color = .NUTS_CLR
    ) +
    plot_labs
  if (chain == 0) return(graph)
  chain_clr <- color_vector_chain(ncol(df_td) - 1)[chain]
  chain_fill <- chain_clr
  chain_data <- plot_data[plot_data$variable == paste0("chain:", chain), , drop = FALSE]
  graph + ggplot2::geom_bar(
    data = chain_data,
    mapping = ggplot2::aes(
      y = ggplot2::after_stat(count) / sum(ggplot2::after_stat(count))
    ),
    fill = chain_fill, width = 1
  )
}

Try the rstan package in your browser

Any scripts or data that you put into this service are public.

rstan documentation built on May 29, 2024, 11:04 a.m.