R/methods.R

Defines functions accuracy.smooth.forecast accuracy.smooth summary.smooth.forecast summary.smooth smoothType simulate.smooth rmultistep.smooth outlierdummy.smooth rstudent.smooth rstandard.smooth residuals.smooth print.oes.sim print.oes print.smooth.forecast print.smooth.sim print.smooth plot.oes.sim plot.oes plot.smooth.forecast plot.smooth.sim plot.smoothC plot.smooth orders.Arima orders.ar orders.smooth orders.default modelType.ets modelType.oesg modelType.smooth modelType.default modelName.smooth modelName.forecast modelName.ets modelName.Arima modelName.lm modelName.ar modelName.default modelLags errorType.smooth lags.smooth lags.Arima lags.ar lags.ets lags.default actuals.smooth.forecast actuals.smooth forecast.oes forecast.smooth fitted.smooth.forecast fitted.smooth coef.smooth pointLik.oes pointLik.smooth sigma.smooth.sim sigma.smooth pls.smooth pls.default pls nparam.smooth nobs.smooth.sim nobs.smooth logLik.smooth.sim logLik.smooth multicov.smooth multicov.default multicov BICc.smooth AICc.smooth modelType modelName lags orders

Documented in accuracy.smooth accuracy.smooth.forecast forecast.oes forecast.smooth lags modelName modelType multicov multicov.smooth orders plot.smooth pls pls.smooth

#' Functions that extract values from the fitted model
#'
#' These functions allow extracting orders and lags for \code{ssarima()}, \code{gum()} and \code{sma()},
#' type of model from \code{es()} and \code{ces()} and name of model.
#'
#' \code{orders()} and \code{lags()} are useful only for SSARIMA, GUM and SMA. They return \code{NA} for other functions.
#' This can also be applied to \code{arima()}, \code{Arima()} and \code{auto.arima()} functions from stats and forecast packages.
#' \code{modelType()} is useful only for ETS and CES. They return \code{NA} for other functions.
#' This can also be applied to \code{ets()} function from forecast package. \code{errorType}
#' extracts the type of error from the model (either additive or multiplicative). Finally, \code{modelName}
#' returns the name of the fitted model. For example, "ARIMA(0,1,1)". This is purely descriptive and
#' can also be applied to non-smooth classes, so that, for example, you can easily extract the name
#' of the fitted AR model from \code{ar()} function from \code{stats} package.
#'
#' @template ssAuthor
#' @template ssKeywords
#'
#' @aliases orders
#' @param object Model estimated using one of the functions of smooth package.
#' @param ... Currently nothing is accepted via ellipsis.
#' @return     Either vector, scalar or list with values is returned.
#' \code{orders()} in case of ssarima returns list of values:
#' \itemize{
#' \item \code{ar} - AR orders.
#' \item \code{i} - I orders.
#' \item \code{ma} - MA orders.
#' }
#' \code{lags()} returns the vector of lags of the model.
#' All the other functions return strings of character.
#' @seealso \link[smooth]{ssarima}, \link[smooth]{msarima}
#' @examples
#'
#' x <- rnorm(100,0,1)
#'
#' # Just as example. orders and lags do not return anything for ces() and es(). But modelType() does.
#' ourModel <- ces(x, h=10)
#' orders(ourModel)
#' lags(ourModel)
#' modelType(ourModel)
#' modelName(ourModel)
#'
#' # And as another example it does the opposite for gum() and ssarima()
#' ourModel <- gum(x, h=10, orders=c(1,1), lags=c(1,4))
#' orders(ourModel)
#' lags(ourModel)
#' modelType(ourModel)
#' modelName(ourModel)
#'
#' # Finally these values can be used for simulate functions or original functions.
#' ourModel <- auto.ssarima(x)
#' ssarima(x, orders=orders(ourModel), lags=lags(ourModel), constant=ourModel$constant)
#' sim.ssarima(orders=orders(ourModel), lags=lags(ourModel), constant=ourModel$constant)
#'
#' ourModel <- es(x)
#' es(x, model=modelType(ourModel))
#' sim.es(model=modelType(ourModel))
#'
#' @rdname orders
#' @export orders
orders <- function(object, ...) UseMethod("orders")

#' @aliases lags
#' @rdname orders
#' @export lags
lags <- function(object, ...) UseMethod("lags")

#' @aliases modelName
#' @rdname orders
#' @export modelName
modelName <- function(object, ...) UseMethod("modelName")

#' @aliases modelType
#' @rdname orders
#' @export modelType
modelType <- function(object, ...) UseMethod("modelType")

##### Likelihood function and stuff #####

#' @importFrom greybox AICc
#' @export
AICc.smooth <- function(object, ...){
    llikelihood <- logLik(object);
    nParamAll <- nparam(object);
    llikelihood <- llikelihood[1:length(llikelihood)];

    if(!is.null(object$occurrence)){
        obs <- sum(object$fitted!=0);
        nParamSizes <- nParamAll - object$nParam[1,3];
        IC <- (2*nParamAll - 2*llikelihood +
                   2*nParamSizes*(nParamSizes + 1) / (obs - nParamSizes - 1));
    }
    else{
        obs <- nobs(object);
        IC <- 2*nParamAll - 2*llikelihood + 2 * nParamAll * (nParamAll + 1) / (obs - nParamAll - 1);
    }

    return(IC);
}

#' @importFrom greybox BICc
#' @export
BICc.smooth <- function(object, ...){
    llikelihood <- logLik(object);
    nParamAll <- nparam(object);
    llikelihood <- llikelihood[1:length(llikelihood)];

    if(!is.null(object$occurrence)){
        obs <- sum(object$fitted!=0);
        nParamSizes <- nParamAll - object$nParam[1,3];
        IC <- - 2*llikelihood + (nParamSizes * log(obs) * obs) / (obs - nParamSizes - 1);
    }
    else{
        obs <- nobs(object);
        IC <- - 2*llikelihood + (nParamAll * log(obs) * obs) / (obs - nParamAll - 1);
    }

    return(IC);
}

#' Function returns the multiple steps ahead covariance matrix of forecast errors
#'
#' This function extracts covariance matrix of 1 to h steps ahead forecast errors for
#' \code{ssarima()}, \code{gum()}, \code{sma()}, \code{es()} and \code{ces()} models.
#'
#' The function returns either scalar (if it is a non-smooth model)
#' or the matrix of (h x h) size with variances and covariances of 1 to h steps ahead
#' forecast errors. This is currently done based on empirical values. The analytical ones
#' are more complicated.
#'
#' @template ssAuthor
#' @template ssKeywords
#'
#' @param object Model estimated using one of the functions of smooth package.
#' @param type What method to use in order to produce covariance matrix:
#' \enumerate{
#' \item \code{analytical} - based on the state space structure of the model and the
#' one-step-ahead forecast error. This works for pure additive and pure multiplicative
#' models. The values for the mixed models might be off.
#' \item \code{empirical} - based on the in-sample 1 to h steps ahead forecast errors
#' (works fine on larger samples);
#' \item \code{simulated} - the data is simulated from the estimated model, then the
#' same model is applied to it and then the empirical 1 to h steps ahead forecast
#' errors are produced;
#' }
#' @param h Forecast horizon to use in the calculations.
#' @param nsim Number of iterations to produce in the simulation. Only needed if
#' \code{type="simulated"}
#' @param ... Other parameters passed to simulate function (if \code{type="simulated"}
#' is used). These are \code{obs} and \code{seed}. By default \code{obs=1000}.
#' This approach increases the accuracy of covariance matrix on small samples
#' and intermittent data;
#' @return Scalar in cases of non-smooth functions. (h x h) matrix otherwise.
#'
#' @seealso \link[smooth]{orders}
#' @examples
#'
#' x <- rnorm(100,0,1)
#'
#' # A simple example with a 5x5 covariance matrix
#' ourModel <- ces(x, h=5)
#' multicov(ourModel)
#'
#' @rdname multicov
#' @export multicov
multicov <-  function(object, type=c("analytical","empirical","simulated"), h=10, nsim=1000,
                      ...) UseMethod("multicov")

#' @export
multicov.default <- function(object, type=c("analytical","empirical","simulated"), h=10, nsim=1000,
                             ...){
    # Function extracts the conditional variances from the model
    return(sigma(object)^2);
}

#' @aliases multicov.smooth
#' @rdname multicov
#' @export
multicov.smooth <- function(object, type=c("analytical","empirical","simulated"), h=10, nsim=1000,
                            ...){
    # Function extracts the conditional variances from the model

    if(is.smoothC(object)){
        stop("Sorry, but covariance matrix is not available for the combinations.",
            call.=FALSE)
    }

    type <- substr(type[1],1,1);

    if(is.null(object$persistence) & any(type==c("a","s"))){
        warning(paste0("The provided model does not contain the components necessary for the ",
                       "derivation of the covariance matrix.\n",
                       "Did you combine forecasts? Switching to 'empirical'"),
                call.=FALSE);
        type <- "e";
    }

    if(!is.null(object$occurrence) & type=="e"){
        warning(paste0("Empirical covariance matrix can be very inaccurate in cases of ",
                       "intemittent models.\nWe recommend using type='s' or type='a' instead."),
                call.=FALSE);
    }

    # Empirical covariance matrix
    if(type=="e"){
        if(errorType(object)=="A"){
            errors <- rmultistep(object, h=h);
        }
        else{
            errors <- log(1 + rmultistep(object, h=h));
        }
        if(!is.null(object$occurrence)){
            obs <- t((errors!=0)*1) %*% (errors!=0)*1;
            obs[obs==0] <- 1;
            df <- obs - nparam(object);
            df[df<=0] <- obs[df<=0];
        }
        else{
            obs <- matrix(nobs(object),ncol(errors),ncol(errors));
            df <- obs - nparam(object);
            df[df<=0] <- obs[df<=0];
        }
        covarMat <- t(errors) %*% errors / df;
    }
    # Simulated covariance matrix
    else if(type=="s"){
        smoothType <- smoothType(object);
        ellipsis <- list(...);
        if(any(names(ellipsis)=="obs")){
            obs <- ellipsis$obs;
        }
        else{
            obs <- length(actuals(object));
        }
        if(any(names(ellipsis)=="seed")){
            seed <- ellipsis$seed;
        }
        else{
            seed <- NULL;
        }

        h <- length(object$forecast);
        # if(smoothType=="ETS"){
        #     smoothFunction <- es;
        # }
        # # GUM models
        # else if(smoothType=="GUM"){
        #     smoothFunction <- gum;
        # }
        # # SSARIMA models
        # else if(smoothType=="ARIMA"){
        #     smoothFunction <- ssarima;
        # }
        # # CES models
        # else if(smoothType=="CES"){
        #     smoothFunction <- ces;
        # }
        # # SMA models
        # else if(smoothType=="SMA"){
        #     smoothFunction <- sma;
        # }

        covarArray <- array(NA,c(h,h,nsim));

        newData <- simulate(object, nsim=nsim, obs=obs, seed=seed);
        for(i in 1:nsim){
            # Apply the model to the simulated data
            # smoothModel <- smoothFunction(newData$data[,i], model=object, h=h);
            # Remove first h-1 and last values.
            # errors <- smoothModel$errors;
            errors <- rmultistep(object, h=h)

            # Transform errors if needed
            if(errorType(object)=="M"){
                # Remove zeroes if they are present
                errors <- errors[!apply(errors==0,1,any),];
                errors <- log(1 + errors);
            }

            # Calculate covariance matrix
            if(!is.null(object$occurrence)){
                obsInSample <- t((errors!=0)*1) %*% (errors!=0)*1;
                obsInSample[obsInSample==0] <- 1;
            }
            else{
                obsInSample <- matrix(nrow(errors),ncol(errors),ncol(errors));
            }
            covarArray[,,i] <- t(errors) %*% errors / obsInSample;
        }

        covarMat <- apply(covarArray,c(1,2),mean);
    }
    # Analytical covariance matrix
    else if(type=="a"){
        if(!is.null(object$occurrence)){
            ot <- (residuals(object)!=0)*1;
        }
        else{
            ot <- rep(1,nobs(object));
        }
        # h <- length(object$forecast);
        lagsModel <- modelLags(object);
        s2 <- sigma(object)^2;
        persistence <- matrix(object$persistence,length(object$persistence),1);
        transition <- object$transition;
        measurement <- object$measurement;

        covarMat <- covarAnal(lagsModel, h, measurement, transition, persistence, s2);

    }
    return(covarMat);
    # correlation matrix: multicov(test) / sqrt(diag(multicov(test)) %*% t(diag(multicov(test))))
}

#' @importFrom stats logLik
#' @export
logLik.smooth <- function(object, ...){
    if(is.null(object$logLik)){
        warning("The likelihood of this model is unavailable. Hint: did you use combinations?");
        return(NULL);
    }
    else{
        return(structure(object$logLik,nobs=nobs(object),df=nparam(object),class="logLik"));
    }
}
#' @export
logLik.smooth.sim <- function(object, ...){
    obs <- nobs(object);
    return(structure(object$logLik,nobs=obs,df=0,class="logLik"));
}

#' @importFrom stats nobs
#' @export
nobs.smooth <- function(object, ...){
    return(length(object$fitted));
}
#' @method nobs smooth.sim
#' @export
nobs.smooth.sim <- function(object, ...){
    if(is.null(dim(object$data))){
        return(length(object$data));
    }
    else{
        return(nrow(object$data));
    }
}

#' @importFrom greybox nparam

#' @export
nparam.smooth <- function(object, ...){
    if(is.null(object$nParam)){
        warning("Number of parameters of the model is unavailable. Hint: did you use combinations?",
                call.=FALSE);
        return(NULL);
    }
    else{
        return(object$nParam[1,ncol(object$nParam)]);
    }
}

#' Prediction Likelihood Score
#'
#' Function estimates Prediction Likelihood Score for the provided model
#'
#' Prediction likelihood score (PLS) is based on either normal or log-normal
#' distribution of errors. This is extracted from the provided model. The likelihood
#' based on the distribution of 1 to h steps ahead forecast errors is used in the process.
#'
#' @template ssAuthor
#' @template ssKeywords
#'
#' @param object The model estimated using smooth functions. This thing also accepts
#' other models (e.g. estimated using functions from forecast package), but may not always
#' work properly with them.
#' @param holdout The values for the holdout part of the sample. If the model was fitted
#' on the data with the \code{holdout=TRUE}, then the parameter is not needed.
#' @param ... Parameters passed to multicov function. The function is called in order to get
#' the covariance matrix of 1 to h steps ahead forecast errors.
#'
#' @return A value of the log-likelihood.
#' @references \itemize{
#' %\item Eltoft, T., Taesu, K., Te-Won, L. (2006). On the multivariate Laplace
#' distribution. IEEE Signal Processing Letters. 13 (5): 300-303.
#' \doi{10.1109/LSP.2006.870353} - this is not yet used in the function.
#' \item Snyder, R. D., Ord, J. K., Beaumont, A., 2012. Forecasting the intermittent
#' demand for slow-moving inventories: A modelling approach. International
#' Journal of Forecasting 28 (2), 485-496.
#' \item Kolassa, S., 2016. Evaluating predictive count data distributions in retail
#' sales forecasting. International Journal of Forecasting 32 (3), 788-803..
#' }
#' @examples
#'
#' # Generate data, apply es() with the holdout parameter and calculate PLS
#' x <- rnorm(100,0,1)
#' ourModel <- es(x, h=10, holdout=TRUE)
#' pls(ourModel, type="a")
#' pls(ourModel, type="e")
#' pls(ourModel, type="s", obs=100, nsim=100)
#'
#' @rdname pls
#' @export pls
pls <-  function(object, holdout=NULL, ...) UseMethod("pls")
# Function calculates PLS based on the provided model

#' @importFrom stats dnorm
#' @export
pls.default <- function(object, holdout=NULL, ...){
    if(is.null(holdout)){
        stop("We need the values from the holdout in order to proceed.",
             call.=FALSE);
    }
    h <- length(holdout);
    yForecast <- forecast(object, h=h)$mean;

    return(sum(dnorm(holdout,yForecast,sigma(object),log=TRUE)));
}

#' @rdname pls
#' @aliases pls.smooth
#' @export
pls.smooth <- function(object, holdout=NULL, ...){
    if(is.smoothC(object)){
        stop("Sorry, but PLS is not available for the combinations.",
             call.=FALSE)
    }
    # If holdout is provided, check it and use it. Otherwise try extracting from the model
    yForecast <- object$forecast;
    covarMat <- multicov(object, ...);
    if(!is.null(holdout)){
        if(length(yForecast)!=length(holdout)){
            if(is.null(object$holdout)){
                stop("The forecast of the model does not correspond to the provided holdout.",
                     call.=FALSE);
            }
            else{
                holdout <- object$holdout;
            }
        }
    }
    else{
        if(all(is.na(object$holdout))){
            stop("No values for the holdout are available. Cannot proceed.",
                 call.=FALSE);
        }
        holdout <- object$holdout;
    }
    h <- length(holdout);

    Etype <- errorType(object);
    loss <- object$loss;
    if(any(loss==c("MAE","MAEh","TMAE","GTMAE","MACE"))){
        loss <- "MAE";
    }
    else if(any(loss==c("HAM","HAMh","THAM","GTHAM","CHAM"))){
        loss <- "HAM";
    }
    else{
        loss <- "MSE";
    }

    densityFunction <- function(loss, ...){
        if(loss=="MAE"){
        # This is a simplification. The real multivariate Laplace is bizarre!
            scale <- sqrt(diag(covarMat)/2);
            plsValue <- sum(dlaplace(errors, 0, scale, log=TRUE));
        }
        else if(loss=="HAM"){
        # This is a simplification. We don't have multivariate HAM yet.
            scale <- (diag(covarMat)/120)^0.25;
            plsValue <- sum(ds(errors, 0, scale, log=TRUE));
        }
        else{
            if(is.infinite(det(covarMat))){
                plsValue <- -as.vector((log(2*pi)+(abs(determinant(covarMat)$modulus)))/2 +
                                           (t(errors) %*% solve(covarMat) %*% errors) / 2);
            }
            # This is the case with overfitting the data
            else if(det(covarMat)==0){
                # If there is any non-zero error, then it means that the model is completely wrong (because it predicts that sigma=0)
                if(any(errors!=0)){
                    plsValue <- -Inf;
                }
                else{
                    plsValue <- 0;
                }
            }
            else{
                # Here and later in the code the abs() is needed for weird cases of wrong covarMat
                plsValue <- -as.vector(log(2*pi*abs(det(covarMat)))/2 +
                                           (t(errors) %*% solve(covarMat) %*% errors) / 2);
            }
        }
        return(plsValue);
    }

    # Additive models
    if(Etype=="A"){
        # Non-intermittent data
        if(is.null(object$occurrence)){
            errors <- holdout - yForecast;
            plsValue <- densityFunction(loss, errors, covarMat);
        }
        # Intermittent data
        else{
            ot <- holdout!=0;
            pForecast <- object$occurrence$forecast;
            errors <- holdout - yForecast / pForecast;
            if(all(ot)){
                plsValue <- densityFunction(loss, errors, covarMat) + sum(log(pForecast));
            }
            else if(all(!ot)){
                plsValue <- sum(log(1-pForecast));
            }
            else{
                errors[!ot] <- 0;

                plsValue <- densityFunction(loss, errors, covarMat);
                plsValue <- plsValue + sum(log(pForecast[ot])) + sum(log(1-pForecast[!ot]));
            }
        }
    }
    # Multiplicative models
    else{
        # Non-intermittent data
        if(is.null(object$occurrence)){
            errors <- log(holdout) - log(yForecast);
            plsValue <- densityFunction(loss, errors, covarMat) - sum(log(holdout));
        }
        # Intermittent data
        else{
            ot <- holdout!=0;
            pForecast <- object$occurrence$forecast;
            errors <- log(holdout) - log(yForecast / pForecast);
            if(all(ot)){
                plsValue <- (densityFunction(loss, errors, covarMat) - sum(log(holdout)) +
                             sum(log(pForecast)));
            }
            else if(all(!ot)){
                plsValue <- sum(log(1-pForecast));
            }
            else{
                errors[!ot] <- 0;

                plsValue <- densityFunction(loss, errors, covarMat) - sum(log(holdout[ot]));
                plsValue <- plsValue + sum(log(pForecast[ot])) + sum(log(1-pForecast[!ot]));
            }
        }
    }

    return(plsValue);
}

#' @importFrom stats sigma
#' @export
sigma.smooth <- function(object, ...){
    if(!is.null(object$s2)){
        return(sqrt(object$s2));
    }
    else{
        return(NULL);
    }
}

#' @export
sigma.smooth.sim <- function(object, ...){
    return(sqrt(mean(residuals(object)^2)));
}

#### pointLik for smooth ####
#' @importFrom greybox pointLik
#' @export
pointLik.smooth <- function(object, log=TRUE, ...){
    obs <- nobs(object);
    errors <- residuals(object);
    likValues <- vector("numeric",obs);
    loss <- object$loss;

    if(errorType(object)=="M"){
        likValues <- likValues - log(actuals(object));
    }

    if(any(loss==c("MAE","MAEh","TMAE","GTMAE","MACE"))){
        likValues <- likValues + dlaplace(errors, 0, mean(abs(errors)), log=log);
    }
    else if(any(loss==c("HAM","HAMh","THAM","GTHAM","CHAM"))){
        likValues <- likValues + ds(errors, 0, mean(sqrt(abs(errors))/2), log=log);
    }
    else{
        likValues <- likValues + dnorm(errors, 0, sqrt(mean(abs(errors)^2)), log=log);
    }

    likValues <- ts(as.vector(likValues), start=start(errors), frequency=frequency(errors));

    return(likValues);
}

#' @export
pointLik.oes <- function(object, log=TRUE, ...){
    ot <- actuals(object);
    pFitted <- fitted(object);
    likValues <- vector("numeric",nobs(object));
    likValues[ot==1] <- log(pFitted[ot==1]);
    likValues[ot==0] <- log(1-pFitted[ot==0]);
    likValues <- ts(likValues, start=start(ot), frequency=frequency(ot));

    if(!log){
        likValues[] <- exp(likValues);
    }
    return(likValues);
}

#### Extraction of parameters of models ####
#' @export
coef.smooth <- function(object, ...)
{
    smoothType <- smoothType(object);
    if(smoothType=="CES"){
        parameters <- c(object$a,object$b);
    }
    else if(smoothType=="ETS"){
        if(any(unlist(gregexpr("C",modelType(object)))==-1)){
            # If this was normal ETS, return values
            parameters <- c(object$persistence,object$initial,object$initialSeason,object$initialX);
        }
        else{
            # If we did combinations, we cannot return anything
            message("Combination of models was done, so there are no coefficients to return");
            parameters <- NULL;
        }
    }
    else if(smoothType=="GUM"){
        parameters <- c(object$measurement,object$transition,object$persistence,object$initial);
        names(parameters) <- c(paste0("Measurement ",c(1:length(object$measurement))),
                               paste0("Transition ",c(1:length(object$transition))),
                               paste0("Persistence ",c(1:length(object$persistence))),
                               paste0("Initial ",c(1:length(object$initial))));
    }
    else if(smoothType=="ARIMA"){
        if(any(unlist(gregexpr("combine",object$model))==-1)){
            # If this was normal ARIMA, return values
            namesConstant <- NamesMA <- NamesAR <- parameters <- NULL;
            if(any(object$AR!=0)){
                parameters <- c(parameters,object$AR);
                NamesAR <- paste(rownames(object$AR),rep(colnames(object$AR),each=nrow(object$AR)),sep=", ");
            }
            if(any(object$MA!=0)){
                parameters <- c(parameters,object$MA);
                NamesMA <- paste(rownames(object$MA),rep(colnames(object$MA),each=nrow(object$MA)),sep=", ")
            }
            if(object$constant!=0){
                parameters <- c(parameters,object$constant);
                namesConstant <- "Constant";
            }
            names(parameters) <- c(NamesAR,NamesMA,namesConstant);
            parameters <- parameters[parameters!=0];
        }
        else{
            # If we did combinations, we cannot return anything
            message("Combination of models was done, so there are no coefficients to return");
            parameters <- NULL;
        }
    }
    else if(smoothType=="SMA"){
        parameters <- object$persistence;
    }

    return(parameters);
}


#### Fitted, forecast and actual values ####
#' @export
fitted.smooth <- function(object, ...){
    return(object$fitted);
}
#' @export
fitted.smooth.forecast <- function(object, ...){
    return(fitted(object$model));
}

#' Forecasting time series using smooth functions
#'
#' Function produces conditional expectation (point forecasts) and prediction
#' intervals for the estimated model.
#'
#' By default the function will generate conditional expectations from the
#' estimated model and will also produce a variety of prediction intervals
#' based on user preferences.
#'
#' @aliases forecast forecast.smooth
#' @param object Time series model for which forecasts are required.
#' @param h Forecast horizon.
#' @param level Confidence level. Defines width of prediction interval.
#' @param side Defines, whether to provide \code{"both"} sides of prediction
#' interval or only \code{"upper"}, or \code{"lower"}.
#' @param ...  Other arguments accepted by either \link[smooth]{es},
#' \link[smooth]{ces}, \link[smooth]{gum} or \link[smooth]{ssarima}.
#' @return Returns object of class "smooth.forecast", which contains:
#'
#' \itemize{
#' \item \code{model} - the estimated model (ES / CES / GUM / SSARIMA).
#' \item \code{method} - the name of the estimated model (ES / CES / GUM / SSARIMA).
#' \item \code{forecast} aka \code{mean} - point forecasts of the model
#' (conditional mean).
#' \item \code{lower} - lower bound of prediction interval.
#' \item \code{upper} - upper bound of prediction interval.
#' \item \code{level} - confidence level.
#' \item \code{interval} - binary variable (whether interval were produced or not).
#' \item \code{scenarios} - in case of \code{forecast.adam()} and
#' \code{interval="simulated"} returns matrix with scenarios (future paths) that were
#' used in simulations.
#' }
#' @template ssAuthor
#' @seealso \code{\link[generics]{forecast}}
#' @references Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008)
#' Forecasting with exponential smoothing: the state space approach,
#' Springer-Verlag.
#' @keywords ts univar
#' @examples
#'
#' ourModel <- ces(rnorm(100,0,1),h=10)
#'
#' forecast(ourModel,h=10)
#' forecast(ourModel,h=10,interval=TRUE)
#' plot(forecast(ourModel,h=10,interval=TRUE))
#'
#' @rdname forecast.smooth
#' @importFrom generics forecast
#' @export
forecast.smooth <- function(object, h=10,
                            interval=c("parametric","semiparametric","nonparametric","none"),
                            level=0.95, side=c("both","upper","lower"), ...){
    smoothType <- smoothType(object);
    interval <- interval[1];
    side <- match.arg(side);
    # This correction is needed in order to reduce the level and then just use one bound
    if(any(side==c("upper","lower"))){
        levelNew <- level*2-1;
    }
    else{
        levelNew <- level;
    }
    # Do calculations
    if(smoothType=="ETS"){
        newModel <- es_old(actuals(object),model=object,h=h,interval=interval,level=levelNew,silent="all",...);
    }
    else if(smoothType=="CES"){
        newModel <- ces(actuals(object),model=object,h=h,interval=interval,level=levelNew,silent="all",...);
    }
    else if(smoothType=="GUM"){
        newModel <- gum(actuals(object),model=object,type=errorType(object),h=h,interval=interval,level=levelNew,silent="all",...);
    }
    else if(smoothType=="ARIMA"){
        if(any(unlist(gregexpr("combine",object$model))==-1)){
            if(is.msarima(object)){
                newModel <- msarima(actuals(object),model=object,h=h,interval=interval,level=levelNew,silent="all",...);
            }
            else{
                newModel <- ssarima(actuals(object),model=object,h=h,interval=interval,level=levelNew,silent="all",...);
            }
        }
        else{
            stop(paste0("Sorry, but in order to produce forecasts for this ARIMA we need to recombine it.\n",
                 "You will have to use auto.ssarima() function instead."),call.=FALSE);
        }
    }
    else if(smoothType=="SMA"){
        newModel <- sma(actuals(object),model=object,h=h,interval=interval,level=levelNew,silent="all",...);
    }
    else{
        stop("Wrong object provided. This needs to be either 'ETS', or 'CES', or 'GUM', or 'SSARIMA', or 'SMA' model.",call.=FALSE);
    }

    # Remove the redundant values, if they were produced
    if(side=="upper"){
        newModel$lower[] <- NA;
        newModel$level <- level;
    }
    else if(side=="lower"){
        newModel$upper[] <- NA;
        newModel$level <- level;
    }

    output <- list(model=object,method=object$model,
                   forecast=newModel$forecast,lower=newModel$lower,upper=newModel$upper,level=newModel$level,
                   interval=interval,mean=newModel$forecast,side=side);

    return(structure(output,class=c("smooth.forecast","forecast")));
}

#' @rdname forecast.smooth
#' @export
forecast.oes <- function(object, h=10,
                         # interval=c("parametric","semiparametric","nonparametric","none"),
                         # level=0.95, side=c("both","upper","lower"),
                         ...){
    # side <- match.arg(side);
    # This correction is needed in order to reduce the level and then just use one bound
    # if(any(side==c("upper","lower"))){
    #     levelNew <- level*2-1;
    # }
    # else{
    #     levelNew <- level;
    # }

    if(is.oesg(object)){
        newModel <- oesg(actuals(object),modelA=object$modelA,modelB=object$modelB,
                         h=h,silent="all",...);
    }
    else{
        newModel <- oes(actuals(object),model=object,h=h,silent="all",...);
    }

    # Remove the redundant values, if they were produced
    # if(side=="upper"){
    #     newModel$lower[] <- NA;
    #     newModel$level <- level;
    # }
    # else if(side=="lower"){
    #     newModel$upper[] <- NA;
    #     newModel$level <- level;
    # }

    output <- list(model=object, method=object$model, mean=newModel$forecast,
                   forecast=newModel$forecast, interval="none"
                   # lower=newModel$lower,upper=newModel$upper,level=levelNew,
                   # interval=interval,side=side
                   );

    return(structure(output,class=c("smooth.forecast","forecast")));
}

#' @importFrom stats window
#' @importFrom greybox actuals
#' @export
actuals.smooth <- function(object, ...){
    return(window(object$y,start=start(object$y),end=end(object$fitted)));
}
#' @export
actuals.smooth.forecast <- function(object, ...){
    return(window(actuals(object$model),start=start(actuals(object$model)),end=end(fitted(object$model))));
}

#### Function extracts lags of provided model ####
#' @export
lags.default <- function(object, ...){
    return(NA);
}

#' @export
lags.ets <- function(object, ...){
    modelName <- modelType(object);
    lags <- c(1);
    if(substr(modelName,nchar(modelName),nchar(modelName))!="N"){
        lags <- c(lags,frequency(actuals(object)));
    }
    return(lags);
}

#' @export
lags.ar <- function(object, ...){
    return(1);
}

#' @export
lags.Arima <- function(object, ...){
    return(c(1,object$arma[5]));
}

#' @export
lags.smooth <- function(object, ...){
    model <- object$model;
    smoothType <- smoothType(object);
    if(!is.null(model)){
        if(smoothType=="GUM"){
            lags <- as.numeric(substring(model,unlist(gregexpr("\\[",model))+1,unlist(gregexpr("\\]",model))-1));
        }
        else if(smoothType=="ARIMA"){
            if(any(unlist(gregexpr("combine",object$model))==-1)){
                if(any(unlist(gregexpr("\\[",model))!=-1)){
                    lags <- as.numeric(substring(model,unlist(gregexpr("\\[",model))+1,unlist(gregexpr("\\]",model))-1));
                }
                else{
                    lags <- 1;
                }
            }
            else{
                warning("ARIMA was combined and we cannot extract lags anymore. Sorry!",call.=FALSE);
            }
        }
        else if(smoothType=="SMA"){
            lags <- 1;
        }
        else if(smoothType=="ETS"){
            modelName <- modelType(object);
            lags <- c(1);
            if(substr(modelName,nchar(modelName),nchar(modelName))!="N"){
                lags <- c(lags,frequency(actuals(object)));
            }
        }
        else if(smoothType=="CES"){
            modelName <- modelType(object);
            dataFreq <- frequency(actuals(object));
            if(modelName=="none"){
                lags <- c(1);
            }
            else if(modelName=="simple"){
                lags <- c(dataFreq);
            }
            else if(modelName=="partial"){
                lags <- c(1,dataFreq);
            }
            else if(modelName=="full"){
                lags <- c(1,dataFreq);
            }
            else{
                stop("Sorry, but we cannot identify the type of the provided model.",
                     call.=FALSE);
            }
        }
        else{
            lags <- NA;
        }
    }
    else{
        lags <- NA;
    }

    return(lags);
}

#' @export
lags.smooth.sim <- lags.smooth;

#### Function extracts type of error in the model: "A" or "M" ####
#' @importFrom greybox errorType
#' @export
errorType.smooth <- function(object, ...){
    smoothType <- smoothType(object);
    # ETS models
    if(smoothType=="ETS"){
        if(any(substr(modelType(object),1,1)==c("A","X"))){
            Etype <- "A";
        }
        else if(any(substr(modelType(object),1,1)==c("M","Y"))){
            Etype <- "M";
        }
        else{
            stop("Sorry, but we cannot define error type for this type of model",
                 call.=FALSE);
        }
    }
    # GUM models
    else if(smoothType=="GUM"){
        if(substr(modelName(object),1,1)=="M"){
            Etype <- "M";
        }
        else{
            Etype <- "A";
        }
    }
    # SSARIMA models
    else if(smoothType=="ARIMA"){
        Etype <- "A";
    }
    # CES models
    else if(smoothType=="CES"){
        Etype <- "A";
    }
    # SMA models
    else if(smoothType=="SMA"){
        Etype <- "A";
    }
    # SMA models
    else if(smoothType=="CMA"){
        Etype <- "A";
    }
    else{
        stop(paste0("Sorry but we cannot identify error type for the model '",object$model),
             call.=FALSE);
    }
    return(Etype);
}

#' @export
errorType.smooth.sim <- errorType.smooth;

##### Function returns the modelLags from the model - internal function #####
modelLags <- function(object, ...){
    modelLags <- NA;
    if(is.msarima(object)){
        modelLags <- object$modelLags;
    }
    else if(is.adam(object)){
        modelLags <- object$lagsAll;
    }
    else{
        smoothType <- smoothType(object);
        if(smoothType=="ETS"){
            modelLags <- matrix(rep(lags(object),times=orders(object)),ncol=1);
        }
        else if(smoothType=="GUM"){
            modelLags <- matrix(rep(lags(object),times=orders(object)),ncol=1);
        }
        else if(smoothType=="ARIMA"){
            ordersARIMA <- orders(object);
            nComponents <- max(ordersARIMA$ar %*% lags(object) + ordersARIMA$i %*% lags(object),
                               ordersARIMA$ma %*% lags(object));
            modelLags <- matrix(rep(1,times=nComponents),ncol=1);
            if(is.numeric(object$constant)){
                modelLags <- rbind(modelLags,1);
            }
        }
        else if(smoothType=="CES"){
            modelLags <- matrix(rep(lags(object),times=orders(object)),ncol=1);
        }
        else if(smoothType=="SMA"){
            modelLags <- matrix(rep(1,times=orders(object)),ncol=1);
        }
    }
    return(modelLags);
}

#### Function extracts the full name of a model. For example "ETS(AAN)" ####
#' @export
modelName.default <- function(object, ...){
    return(NA);
}

#' @export
modelName.ar <- function(object, ...){
    return(paste0("AR(",object$order,")"));
}

#' @export
modelName.lm <- function(object, ...){
    return("Regression");
}

#' @export
modelName.Arima <- function(object, ...){
    ordersArma <- object$arma;
    if(all(ordersArma[c(3,4,7)]==0)){
        return(paste0("ARIMA(",paste(ordersArma[c(1,6,2)],collapse=","),")"));
    }
    else{
        return(paste0("SARIMA(",paste(ordersArma[c(1,6,2)],collapse=","),")(",
                      paste(ordersArma[c(3,7,4)],collapse=","),")[",ordersArma[5],"]"));
    }
}

#' @export
modelName.ets <- function(object, ...){
    return(object$method);
}

#' @export
modelName.forecast <- function(object, ...){
    return(object$method);
}

#' @export
modelName.smooth <- function(object, ...){
    return(object$model);
}

#### Function extracts type of model. For example "AAN" from ets ####
#' @export
modelType.default <- function(object, ...){
    return(NA);
}

#' @export
modelType.smooth <- function(object, ...){
    model <- object$model;
    smoothType <- smoothType(object);

    if(smoothType=="ETS"){
        modelType <- substring(model,unlist(gregexpr("\\(",model))+1,unlist(gregexpr("\\)",model))-1);
    }
    else if(smoothType=="CES"){
        modelType <- substring(model,unlist(gregexpr("\\(",model))+1,unlist(gregexpr("\\)",model))-1);
        if(modelType=="n"){
            modelType <- "none";
        }
        else if(modelType=="s"){
            modelType <- "simple";
        }
        else if(modelType=="p"){
            modelType <- "partial";
        }
        else{
            modelType <- "full";
        }
    }
    else{
        modelType <- NA;
    }

    return(modelType);
}

#' @export
modelType.smooth.sim <- modelType.smooth;

#' @export
modelType.oesg <- function(object, ...){
    return(modelType(object$modelA));
}

#' @export
modelType.ets <- function(object, ...){
    return(gsub(",","",substring(object$method,5,nchar(object$method)-1)));
}

#### Function extracts orders of provided model ####
#' @export
orders.default <- function(object, ...){
    return(NA);
}

#' @export
orders.smooth <- function(object, ...){
    smoothType <- smoothType(object);
    model <- object$model;
    if(!is.null(model)){
        if(smoothType=="GUM"){
            orders <- as.numeric(substring(model,unlist(gregexpr("\\[",model))-1,unlist(gregexpr("\\[",model))-1));
        }
        else if(smoothType=="ARIMA"){
            if(any(unlist(gregexpr("combine",object$model))==-1)){
                arima.orders <- paste0(c("",substring(model,unlist(gregexpr("\\(",model))+1,unlist(gregexpr("\\)",model))-1),"")
                                       ,collapse=";");
                comas <- unlist(gregexpr("\\,",arima.orders));
                semicolons <- unlist(gregexpr("\\;",arima.orders));
                ar.orders <- as.numeric(substring(arima.orders,semicolons[-length(semicolons)]+1,comas[2*(1:(length(comas)/2))-1]-1));
                i.orders <- as.numeric(substring(arima.orders,comas[2*(1:(length(comas)/2))-1]+1,comas[2*(1:(length(comas)/2))-1]+1));
                ma.orders <- as.numeric(substring(arima.orders,comas[2*(1:(length(comas)/2))]+1,semicolons[-1]-1));

                orders <- list(ar=ar.orders,i=i.orders,ma=ma.orders);
            }
            else{
                warning("ARIMA was combined and we cannot extract orders anymore. Sorry!",call.=FALSE);
            }
        }
        else if(smoothType=="SMA"){
            orders <- as.numeric(substring(model,unlist(gregexpr("\\(",model))+1,unlist(gregexpr("\\)",model))-1));
        }
        else if(smoothType=="ETS"){
            modelName <- modelType(object);
            orders <- 1;
            if(substr(modelName,2,2)!="N"){
                orders <- 2;
            }
            if(substr(modelName,nchar(modelName),nchar(modelName))!="N"){
                orders <- c(orders, 1);
            }
        }
        else if(smoothType=="CES"){
            modelName <- modelType(object);
            if(modelName=="none"){
                orders <- 2;
            }
            else if(modelName=="simple"){
                orders <- 2;
            }
            else if(modelName=="partial"){
                orders <- c(2,1);
            }
            else if(modelName=="full"){
                orders <- c(2,2);
            }
            else{
                stop("Sorry, but we cannot identify the type of the provided model.",
                     call.=FALSE);
            }
        }
        else{
            orders <- NA;
        }
    }
    else{
        orders <- NA;
    }

    return(orders);
}

#' @export
orders.smooth.sim <- orders.smooth;

#' @export
orders.ar <- function(object, ...){
    return(list(ar=object$order));
}

#' @export
orders.Arima <- function(object, ...){
    model <- object$arma;

    ar.orders <- c(model[1],model[3]);
    i.orders <-  c(model[6],model[7]);
    ma.orders <- c(model[2],model[4]);

    orders <- list(ar=ar.orders,i=i.orders,ma=ma.orders);

    return(orders);
}

#### Plots of smooth objects ####
#' Plots for the fit and states
#'
#' The function produces diagnostics plots for a \code{smooth} model
#'
#' The list of produced plots includes:
#' \enumerate{
#' \item Actuals vs Fitted values. Allows analysing, whether there are any issues in the fit.
#' Does the variability of actuals increase with the increase of fitted values? Is the relation
#' well captured? They grey line on the plot corresponds to the perfect fit of the model.
#' \item Standardised residuals vs Fitted. Plots the points and the confidence bounds
#' (red lines) for the specified confidence \code{level}. Useful for the analysis of outliers;
#' \item Studentised residuals vs Fitted. This is similar to the previous plot, but with the
#' residuals divided by the scales with the leave-one-out approach. Should be more sensitive
#' to outliers;
#' \item Absolute residuals vs Fitted. Useful for the analysis of heteroscedasticity;
#' \item Squared residuals vs Fitted - similar to (3), but with squared values;
#' \item Q-Q plot with the specified distribution. Can be used in order to see if the
#' residuals follow the assumed distribution. The type of distribution depends on the one used
#' in the estimation (see \code{distribution} parameter in \link[greybox]{alm});
#' \item ACF of the residuals. Are the residuals autocorrelated? See \link[stats]{acf} for
#' details;
#' \item Fitted over time. Plots actuals (black line), fitted values (purple line), point forecast
#' (blue line) and prediction interval (grey lines). Can be used in order to make sure that the model
#' did not miss any important events over time;
#' \item Standardised residuals vs Time. Useful if you want to see, if there is autocorrelation or
#' if there is heteroscedasticity in time. This also shows, when the outliers happen;
#' \item Studentised residuals vs Time. Similar to previous, but with studentised residuals;
#' \item PACF of the residuals. No, really, are they autocorrelated? See pacf function from stats
#' package for details;
#' \item Plot of the states of the model. It is not recommended to produce this plot together with
#' the others, because there might be several states, which would cause the creation of a different
#' canvas. In case of "msdecompose", this will produce the decomposition of the series into states
#' on a different canvas;
#' \item Absolute standardised residuals vs Fitted. Similar to the previous, but with absolute
#' values. This is more relevant to the models where scale is calculated as an absolute value of
#' something (e.g. Laplace);
#' \item Squared standardised residuals vs Fitted. This is an additional plot needed to diagnose
#' heteroscedasticity in a model with varying scale. The variance on this plot will be constant if
#' the adequate model for \code{scale} was constructed. This is more appropriate for normal and
#' the related distributions.
#' }
#' Which of the plots to produce, is specified via the \code{which} parameter.
#'
#' @param x Estimated smooth model.
#' @param which Which of the plots to produce. The possible options (see details for explanations):
#' \enumerate{
#' \item Actuals vs Fitted values;
#' \item Standardised residuals vs Fitted;
#' \item Studentised residuals vs Fitted;
#' \item Absolute residuals vs Fitted;
#' \item Squared residuals vs Fitted;
#' \item Q-Q plot with the specified distribution;
#' \item Fitted over time;
#' \item Standardised residuals vs Time;
#' \item Studentised residuals vs Time;
#' \item ACF of the residuals;
#' \item PACF of the residuals;
#' \item Plot of states of the model;
#' \item Absolute standardised residuals vs Fitted;
#' \item Squared standardised residuals vs Fitted;
#' \item ACF of the squared residuals;
#' \item PACF of the squared residuals.
#' }
#' @param level Confidence level. Defines width of confidence interval. Used in plots (2), (3), (7), (8),
#' (9), (10) and (11).
#' @param legend If \code{TRUE}, then the legend is produced on plots (2), (3) and (7).
#' @param ask Logical; if \code{TRUE}, the user is asked to press Enter before each plot.
#' @param lowess Logical; if \code{TRUE}, LOWESS lines are drawn on scatterplots, see \link[stats]{lowess}.
#' @param ... The parameters passed to the plot functions. Recommended to use with separate plots.
#' @return The function produces the number of plots, specified in the parameter \code{which}.
#'
#' @template ssAuthor
#' @seealso \link[greybox]{plot.greybox}
#' @keywords ts univar
#' @examples
#'
#' ourModel <- es(c(rnorm(50,100,10),rnorm(50,120,10)), "ANN", h=10)
#' par(mfcol=c(3,4))
#' plot(ourModel, c(1:11))
#' plot(ourModel, 12)
#'
#' @importFrom stats ppoints qqnorm qqplot qqline acf pacf lowess sd na.pass
#' @importFrom grDevices dev.interactive devAskNewPage
#' @importFrom graphics plot text
#' @importFrom greybox is.occurrence
#' @rdname plot.smooth
#' @export
plot.smooth <- function(x, which=c(1,2,4,6), level=0.95, legend=FALSE,
                        ask=prod(par("mfcol")) < length(which) && dev.interactive(),
                        lowess=TRUE, ...){
    ellipsis <- list(...);

    # Define, whether to wait for the hit of "Enter"
    if(ask){
        oask <- devAskNewPage(TRUE);
        on.exit(devAskNewPage(oask));
    }

    # 1. Fitted vs Actuals values
    plot1 <- function(x, ...){
        ellipsis <- list(...);

        # Get the actuals and the fitted values
        ellipsis$y <- as.vector(actuals(x));
        if(is.occurrence(x)){
            if(any(x$distribution==c("plogis","pnorm"))){
                ellipsis$y <- (ellipsis$y!=0)*1;
            }
        }
        ellipsis$x <- as.vector(fitted(x));

        # If this is a mixture model, remove zeroes
        if(is.occurrence(x$occurrence)){
            ellipsis$x <- ellipsis$x[ellipsis$y!=0];
            ellipsis$y <- ellipsis$y[ellipsis$y!=0];
        }

        # Remove NAs
        if(any(is.na(ellipsis$x))){
            ellipsis$y <- ellipsis$y[!is.na(ellipsis$x)];
            ellipsis$x <- ellipsis$x[!is.na(ellipsis$x)];
        }
        if(any(is.na(ellipsis$y))){
            ellipsis$x <- ellipsis$x[!is.na(ellipsis$y)];
            ellipsis$y <- ellipsis$y[!is.na(ellipsis$y)];
        }

        # Title
        if(!any(names(ellipsis)=="main")){
            ellipsis$main <- "Actuals vs Fitted";
        }
        # If type and ylab are not provided, set them...
        if(!any(names(ellipsis)=="type")){
            ellipsis$type <- "p";
        }
        if(!any(names(ellipsis)=="ylab")){
            ellipsis$ylab <- "Actuals";
        }
        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Fitted";
        }
        # xlim and ylim
        if(!any(names(ellipsis)=="xlim")){
            ellipsis$xlim <- range(c(ellipsis$x,ellipsis$y));
        }
        if(!any(names(ellipsis)=="ylim")){
            ellipsis$ylim <- range(c(ellipsis$x,ellipsis$y));
        }

        # Start plotting
        do.call(plot,ellipsis);
        abline(a=0,b=1,col="grey",lwd=2,lty=2)
        if(lowess){
            lines(lowess(ellipsis$x, ellipsis$y), col="red");
        }
    }

    # 2 and 3: Standardised  / studentised residuals vs Fitted
    plot2 <- function(x, type="rstandard", ...){
        ellipsis <- list(...);

        ellipsis$x <- as.vector(fitted(x));
        if(type=="rstandard"){
            ellipsis$y <- as.vector(rstandard(x));
            yName <- "Standardised";
        }
        else{
            ellipsis$y <- as.vector(rstudent(x));
            yName <- "Studentised";
        }

        if(!any(names(ellipsis)=="main")){
            ellipsis$main <- paste0(yName," Residuals vs Fitted");
        }

        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Fitted";
        }
        if(!any(names(ellipsis)=="ylab")){
            ellipsis$ylab <- paste0(yName," Residuals");
        }

        if(legend){
            if(ellipsis$x[length(ellipsis$x)]>mean(ellipsis$x)){
                legendPosition <- "bottomright";
            }
            else{
                legendPosition <- "topright";
            }
        }

        # Get the IDs of outliers and statistic
        outliers <- outlierdummy(x, level=level, type=type);
        outliersID <- outliers$id;
        statistic <- outliers$statistic;

        # Substitute zeroes with NAs if there was an occurrence
        if(is.occurrence(x$occurrence)){
            ellipsis$x[actuals(x$occurrence)==0] <- NA;
        }

        if(!any(names(ellipsis)=="ylim")){
            ellipsis$ylim <- range(c(ellipsis$y,statistic), na.rm=TRUE)*1.2;
            if(legend){
                if(legendPosition=="bottomright"){
                    ellipsis$ylim[1] <- ellipsis$ylim[1] - 0.2*diff(ellipsis$ylim);
                }
                else{
                    ellipsis$ylim[2] <- ellipsis$ylim[2] + 0.2*diff(ellipsis$ylim);
                }
            }
        }

        xRange <- range(ellipsis$x, na.rm=TRUE);
        xRange[1] <- xRange[1] - sd(ellipsis$x, na.rm=TRUE);
        xRange[2] <- xRange[2] + sd(ellipsis$x, na.rm=TRUE);

        do.call(plot,ellipsis);
        abline(h=0, col="grey", lty=2);
        polygon(c(xRange,rev(xRange)),c(statistic[1],statistic[1],statistic[2],statistic[2]),
                col="lightgrey", border=NA, density=10);
        abline(h=statistic, col="red", lty=2);
        if(length(outliersID)>0){
            points(ellipsis$x[outliersID], ellipsis$y[outliersID], pch=16);
            text(ellipsis$x[outliersID], ellipsis$y[outliersID], labels=outliersID, pos=(ellipsis$y[outliersID]>0)*2+1);
        }
        if(lowess){
            # Remove NAs
            if(any(is.na(ellipsis$x))){
                ellipsis$y <- ellipsis$y[!is.na(ellipsis$x)];
                ellipsis$x <- ellipsis$x[!is.na(ellipsis$x)];
            }
            lines(lowess(ellipsis$x, ellipsis$y), col="red");
        }

        if(legend){
            if(lowess){
                legend(legendPosition,
                       legend=c(paste0(round(level,3)*100,"% bounds"),"outside the bounds","LOWESS line"),
                       col=c("red", "black","red"), lwd=c(1,NA,1), lty=c(2,1,1), pch=c(NA,16,NA));
            }
            else{
                legend(legendPosition,
                       legend=c(paste0(round(level,3)*100,"% bounds"),"outside the bounds"),
                       col=c("red", "black"), lwd=c(1,NA), lty=c(2,1), pch=c(NA,16));
            }
        }
    }

    # 4 and 5. Fitted vs |Residuals| or Fitted vs Residuals^2
    plot3 <- function(x, type="abs", ...){
        ellipsis <- list(...);

        ellipsis$x <- as.vector(fitted(x));
        if(type=="abs"){
            ellipsis$y <- abs(as.vector(residuals(x)));
        }
        else{
            ellipsis$y <- as.vector(residuals(x))^2;
        }

        if(is.occurrence(x$occurrence)){
            ellipsis$x <- ellipsis$x[ellipsis$y!=0];
            ellipsis$y <- ellipsis$y[ellipsis$y!=0];
        }
        # Remove NAs
        if(any(is.na(ellipsis$x))){
            ellipsis$x <- ellipsis$x[!is.na(ellipsis$x)];
            ellipsis$y <- ellipsis$y[!is.na(ellipsis$y)];
        }

        if(!any(names(ellipsis)=="main")){
            if(type=="abs"){
                ellipsis$main <- "|Residuals| vs Fitted";
            }
            else{
                ellipsis$main <- "Residuals^2 vs Fitted";
            }
        }

        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Fitted";
        }
        if(!any(names(ellipsis)=="ylab")){
            if(type=="abs"){
                ellipsis$ylab <- "|Residuals|";
            }
            else{
                ellipsis$ylab <- "Residuals^2";
            }
        }

        do.call(plot,ellipsis);
        abline(h=0, col="grey", lty=2);
        if(lowess){
            lines(lowess(ellipsis$x, ellipsis$y), col="red");
        }
    }

    # 6. Q-Q with the specified distribution
    plot4 <- function(x, ...){
        ellipsis <- list(...);

        ellipsis$y <- as.vector(residuals(x));
        if(is.occurrence(x$occurrence)){
            ellipsis$y <- ellipsis$y[actuals(x$occurrence)!=0];
        }

        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Theoretical Quantile";
        }
        if(!any(names(ellipsis)=="ylab")){
            ellipsis$ylab <- "Actual Quantile";
        }

        if(any(x$loss==c("MAEh","TMAE","GTMAE","MACE"))){
            if(!any(names(ellipsis)=="main")){
                ellipsis$main <- "QQ-plot of Laplace distribution";
            }
            ellipsis$x <- qlaplace(ppoints(500), mu=0, scale=x$scale);

            do.call(qqplot, ellipsis);
            qqline(ellipsis$y, distribution=function(p) qlaplace(p, mu=0, scale=x$scale));
        }
        else if(any(x$loss==c("HAMh","THAM","GTHAM","CHAM"))){
            if(!any(names(ellipsis)=="main")){
                ellipsis$main <- "QQ-plot of S distribution";
            }
            ellipsis$x <- qs(ppoints(500), mu=0, scale=x$scale);

            do.call(qqplot, ellipsis);
            qqline(ellipsis$y, distribution=function(p) qs(p, mu=0, scale=x$scale));
        }
        else{
            if(!any(names(ellipsis)=="main")){
                ellipsis$main <- "QQ plot of normal distribution";
            }

            do.call(qqnorm, ellipsis);
            qqline(ellipsis$y);
        }
    }

    # 7. Basic plot over time
    plot5 <- function(x, ...){
        ellipsis <- list(...);

        ellipsis$actuals <- actuals(x);
        if(!is.null(x$holdout)){
            yHoldout <- x$holdout;
            if(is.zoo(ellipsis$actuals)){
                ellipsis$actuals <- zoo(c(as.vector(ellipsis$actuals),as.vector(yHoldout)),
                                        order.by=c(time(ellipsis$actuals),time(yHoldout)));
            }
            else{
                ellipsis$actuals <- ts(c(ellipsis$actuals,yHoldout),
                                       start=start(ellipsis$actuals),
                                       frequency=frequency(ellipsis$actuals));
            }
        }
        if(is.null(ellipsis$main)){
            ellipsis$main <- x$model;
        }
        ellipsis$forecast <- x$forecast;
        ellipsis$fitted <- fitted(x);
        ellipsis$legend <- FALSE;
        ellipsis$parReset <- FALSE;
        if(!any(x$interval==c("none","n"))){
            ellipsis$lower <- x$lower;
            ellipsis$upper <- x$upper;
            ellipsis$level <- x$level;
        }

        do.call(graphmaker, ellipsis);
    }

    # 8 and 9. Standardised / Studentised residuals vs time
    plot6 <- function(x, type="rstandard", ...){

        ellipsis <- list(...);
        if(type=="rstandard"){
            ellipsis$x <- rstandard(x);
            yName <- "Standardised";
        }
        else{
            ellipsis$x <- rstudent(x);
            yName <- "Studentised";
        }

        if(!any(names(ellipsis)=="main")){
            ellipsis$main <- paste0(yName," Residuals vs Time");
        }

        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Time";
        }
        if(!any(names(ellipsis)=="ylab")){
            ellipsis$ylab <- paste0(yName," Residuals");
        }

        # If type and ylab are not provided, set them...
        if(!any(names(ellipsis)=="type")){
            ellipsis$type <- "l";
        }

        # Get the IDs of outliers and statistic
        outliers <- outlierdummy(x, level=level, type=type);
        outliersID <- outliers$id;
        statistic <- outliers$statistic;

        if(!any(names(ellipsis)=="ylim")){
            ellipsis$ylim <- range(c(ellipsis$x,statistic),na.rm=TRUE)*1.2;
        }

        if(legend){
            legendPosition <- "topright";
            ellipsis$ylim[2] <- ellipsis$ylim[2] + 0.2*diff(ellipsis$ylim);
            ellipsis$ylim[1] <- ellipsis$ylim[1] - 0.2*diff(ellipsis$ylim);
        }

        # Start plotting
        do.call(plot,ellipsis);
        if(is.occurrence(x$occurrence)){
            points(ellipsis$x);
        }
        if(length(outliersID)>0){
            points(time(ellipsis$x)[outliersID], ellipsis$x[outliersID], pch=16);
            text(time(ellipsis$x)[outliersID], ellipsis$x[outliersID], labels=outliersID, pos=(ellipsis$x[outliersID]>0)*2+1);
        }
        if(lowess){
            # Substitute NAs with the mean
            if(any(is.na(ellipsis$x))){
                ellipsis$x[is.na(ellipsis$x)] <- mean(ellipsis$x, na.rm=TRUE);
            }
            lines(lowess(c(1:length(ellipsis$x)),ellipsis$x), col="red");
        }
        abline(h=0, col="grey", lty=2);
        abline(h=statistic[1], col="red", lty=2);
        abline(h=statistic[2], col="red", lty=2);
        polygon(c(1:nobs(x), c(nobs(x):1)),
                c(rep(statistic[1],nobs(x)), rep(statistic[2],nobs(x))),
                col="lightgrey", border=NA, density=10);
        if(legend){
            legend(legendPosition,legend=c("Residuals",paste0(level*100,"% prediction interval")),
                   col=c("black","red"), lwd=rep(1,3), lty=c(1,1,2));
        }
    }

    # 10 and 11. ACF and PACF
    plot7 <- function(x, type="acf", squared=FALSE, ...){
        ellipsis <- list(...);

        if(!any(names(ellipsis)=="main")){
            if(type=="acf"){
                if(squared){
                    ellipsis$main <- "Autocorrelation Function of Squared Residuals";
                }
                else{
                    ellipsis$main <- "Autocorrelation Function of Residuals";
                }
            }
            else{
                if(squared){
                    ellipsis$main <- "Partial Autocorrelation Function of Squared Residuals";
                }
                else{
                    ellipsis$main <- "Partial Autocorrelation Function of Residuals";
                }
            }
        }

        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Lags";
        }
        if(!any(names(ellipsis)=="ylab")){
            if(type=="acf"){
                ellipsis$ylab <- "ACF";
            }
            else{
                ellipsis$ylab <- "PACF";
            }
        }

        if(!any(names(ellipsis)=="ylim")){
            ellipsis$ylim <- c(-1,1);
        }

        if(squared){
            if(type=="acf"){
                theValues <- acf(as.vector(residuals(x)^2), plot=FALSE, na.action=na.pass)
            }
            else{
                theValues <- pacf(as.vector(residuals(x)^2), plot=FALSE, na.action=na.pass);
            }
        }
        else{
            if(type=="acf"){
                theValues <- acf(as.vector(residuals(x)), plot=FALSE, na.action=na.pass)
            }
            else{
                theValues <- pacf(as.vector(residuals(x)), plot=FALSE, na.action=na.pass);
            }
        }
        ellipsis$x <- switch(type,
                             "acf"=theValues$acf[-1],
                             "pacf"=theValues$acf);
        statistic <- qnorm(c((1-level)/2, (1+level)/2),0,sqrt(1/nobs(x)));

        ellipsis$type <- "h"

        do.call(plot,ellipsis);
        abline(h=0, col="black", lty=1);
        abline(h=statistic, col="red", lty=2);
        if(any(ellipsis$x>statistic[2] | ellipsis$x<statistic[1])){
            outliersID <- which(ellipsis$x >statistic[2] | ellipsis$x <statistic[1]);
            points(outliersID, ellipsis$x[outliersID], pch=16);
            text(outliersID, ellipsis$x[outliersID], labels=outliersID, pos=(ellipsis$x[outliersID]>0)*2+1);
        }
    }

    # 12. Plot of states
    plot8 <- function(x, ...){
        parDefault <- par(no.readonly=TRUE);
        on.exit(par(parDefault), add=TRUE);
        smoothType <- smoothType(x);
        if(smoothType=="ETS"){
            if(any(unlist(gregexpr("C",x$model))==-1)){
                statesNames <- c("actuals",colnames(x$states),"residuals");
                x$states <- cbind(actuals(x),x$states,residuals(x));
                colnames(x$states) <- statesNames;
                if(ncol(x$states)>10){
                    message("Too many states. Plotting them one by one on several graphs.");
                    if(is.null(ellipsis$main)){
                        ellipsisMain <- NULL;
                    }
                    else{
                        ellipsisMain <- ellipsis$main;
                    }
                    nPlots <- ceiling(ncol(x$states)/10);
                    for(i in 1:nPlots){
                        if(is.null(ellipsisMain)){
                            ellipsis$main <- paste0("States of ",x$model,", part ",i);
                        }
                        ellipsis$x <- x$states[,(1+(i-1)*10):min(i*10,ncol(x$states)),drop=FALSE];
                        do.call(plot, ellipsis);
                    }
                }
                else{
                    if(ncol(x$states)<=5){
                        ellipsis$nc <- 1;
                    }
                    if(is.null(ellipsis$main)){
                        ellipsis$main <- paste0("States of ",x$model);
                    }
                    ellipsis$x <- x$states;
                    do.call(plot, ellipsis);
                }
            }
            else{
                # If we did combinations, we cannot return anything
                message("Combination of models was done. Sorry, but there is nothing to plot.");
            }
        }
        else if(smoothType=="CMA"){
            ellipsis$actuals <- actuals(x);
            ellipsis$forecast <- x$forecast;
            ellipsis$fitted <- x$fitted;
            ellipsis$legend <- FALSE;
            ellipsis$vline <- FALSE;
            if(is.null(ellipsis$main)){
                ellipsis$main <- x$model;
            }
            do.call(graphmaker, ellipsis);
        }
        else{
            if(any(unlist(gregexpr("combine",x$model))!=-1)){
                # If we did combinations, we cannot do anything
                message("Combination of models was done. Sorry, but there is nothing to plot.");
            }
            else{
                statesNames <- c(colnames(x$states),"residuals");
                x$states <- cbind(x$states,residuals(x));
                colnames(x$states) <- statesNames;
                if(ncol(x$states)>10){
                    message("Too many states. Plotting them one by one on several graphs.");
                    if(is.null(ellipsis$main)){
                        ellipsisMain <- NULL;
                    }
                    else{
                        ellipsisMain <- ellipsis$main;
                    }
                    nPlots <- ceiling(ncol(x$states)/10);
                    for(i in 1:nPlots){
                        if(is.null(ellipsisMain)){
                            ellipsis$main <- paste0("States of ",x$model,", part ",i);
                        }
                        ellipsis$x <- x$states[,(1+(i-1)*10):min(i*10,ncol(x$states))];
                        do.call(plot, ellipsis);
                    }
                }
                else{
                    if(is.null(ellipsis$main)){
                        ellipsis$main <- paste0("States of ",x$model);
                    }
                    ellipsis$x <- x$states;
                    do.call(plot, ellipsis);
                }
            }
        }
    }

    # 13 and 14. Fitted vs (std. Residuals)^2 or Fitted vs |std. Residuals|
    plot9 <- function(x, type="abs", ...){
        ellipsis <- list(...);

        ellipsis$x <- as.vector(fitted(x));
        ellipsis$y <- as.vector(rstandard(x));
        if(any(x$distribution==c("dinvgauss","dgamma"))){
            ellipsis$y[] <- log(ellipsis$y);
        }
        if(type=="abs"){
            ellipsis$y[] <- abs(ellipsis$y);
        }
        else{
            ellipsis$y[] <- ellipsis$y^2;
        }

        if(is.occurrence(x$occurrence)){
            ellipsis$x <- ellipsis$x[actuals(x$occurrence)!=0];
            ellipsis$y <- ellipsis$y[actuals(x$occurrence)!=0];
        }
        # Remove NAs
        if(any(is.na(ellipsis$x))){
            ellipsis$x <- ellipsis$x[!is.na(ellipsis$x)];
            ellipsis$y <- ellipsis$y[!is.na(ellipsis$y)];
        }

        if(!any(names(ellipsis)=="main")){
            if(type=="abs"){
                if(any(x$distribution==c("dinvgauss","dgamma","dlnorm","dllaplace","dls","dlgnorm"))){
                    ellipsis$main <- paste0("|log(Standardised Residuals)| vs Fitted");
                }
                else{
                    ellipsis$main <- "|Standardised Residuals| vs Fitted";
                }
            }
            else{
                if(any(x$distribution==c("dinvgauss","dgamma","dlnorm","dllaplace","dls","dlgnorm"))){
                    ellipsis$main <- paste0("log(Standardised Residuals)^2 vs Fitted");
                }
                else{
                    ellipsis$main <- "Standardised Residuals^2 vs Fitted";
                }
            }
        }

        if(!any(names(ellipsis)=="xlab")){
            ellipsis$xlab <- "Fitted";
        }
        if(!any(names(ellipsis)=="ylab")){
            if(type=="abs"){
                if(any(x$distribution==c("dinvgauss","dgamma","dlnorm","dllaplace","dls","dlgnorm"))){
                    ellipsis$ylab <- "|log(Standardised Residuals)|";
                }
                else{
                    ellipsis$ylab <- "|Standardised Residuals|";
                }
            }
            else{
                if(any(x$distribution==c("dinvgauss","dgamma","dlnorm","dllaplace","dls","dlgnorm"))){
                    ellipsis$ylab <- "log(Standardised Residuals)^2";
                }
                else{
                    ellipsis$ylab <- "Standardised Residuals^2";
                }
            }
        }

        do.call(plot,ellipsis);
        abline(h=0, col="grey", lty=2);
        if(lowess){
            lines(lowess(ellipsis$x[!is.na(ellipsis$y)], ellipsis$y[!is.na(ellipsis$y)]), col="red");
        }
    }

    # Do plots
    for(i in which){
        if(any(i==1)){
            plot1(x, ...);
        }
        else if(any(i==2)){
            plot2(x, ...);
        }
        else if(any(i==3)){
            plot2(x, "rstudent", ...);
        }
        else if(any(i==4)){
            plot3(x, ...);
        }
        else if(any(i==5)){
            plot3(x, type="squared", ...);
        }
        else if(any(i==6)){
            plot4(x, ...);
        }
        else if(any(i==7)){
            plot5(x, ...);
        }
        else if(any(i==8)){
            plot6(x, ...);
        }
        else if(any(i==9)){
            plot6(x, "rstudent", ...);
        }
        else if(any(i==10)){
            plot7(x, type="acf", ...);
        }
        else if(any(i==11)){
            plot7(x, type="pacf", ...);
        }
        else if(any(i==12)){
            plot8(x, ...);
        }
        else if(any(i==13)){
            plot9(x, ...);
        }
        else if(any(i==14)){
            plot9(x, type="squared", ...);
        }
        else if(any(i==15)){
            plot7(x, type="acf", squared=TRUE, ...);
        }
        else if(any(i==16)){
            plot7(x, type="pacf", squared=TRUE, ...);
        }
    }
}

#' @export
plot.smoothC <- function(x, ...){
    graphmaker(actuals(x), x$forecast, x$fitted, x$lower, x$upper, x$level,
               main="Combined smooth forecasts");
}

#' @export
plot.smooth.sim <- function(x, ...){
    ellipsis <- list(...);
    if(is.null(ellipsis$main)){
        ellipsis$main <- x$model;
    }

    if(is.null(dim(x$data))){
        nsim <- 1;
    }
    else{
        nsim <- dim(x$data)[2];
    }

    if(nsim==1){
        if(is.null(ellipsis$ylab)){
            ellipsis$ylab <- "Data";
        }
        ellipsis$x <- x$data;
        do.call(plot, ellipsis);
    }
    else{
        randomNumber <- ceiling(runif(1,1,nsim));
        message(paste0("You have generated ",nsim," time series. Not sure which of them to plot.\n",
                       "Please use plot(ourSimulation$data[,k]) instead. Plotting randomly selected series N",randomNumber,"."));
        if(is.null(ellipsis$ylab)){
            ellipsis$ylab <- paste0("Series N",randomNumber);
        }
        ellipsis$x <- x$data[,randomNumber];
        do.call(plot, ellipsis);
    }
}

#' @method plot smooth.forecast
#' @export
plot.smooth.forecast <- function(x, ...){
    yActuals <- actuals(x$model);
    if(!is.null(x$model$holdout)){
        yActuals <- ts(c(yActuals,x$model$holdout), start=start(yActuals), frequency=frequency(yActuals));
        yActuals <- window(yActuals, start=start(yActuals), end=min(tail(time(x$mean),1),tail(time(yActuals),1)));
    }
    if(!any(x$interval==c("none","n"))){
        graphmaker(yActuals,x$mean,fitted(x$model),x$lower,x$upper,x$level,...);
    }
    else{
        graphmaker(yActuals,x$mean,fitted(x$model),...);
    }
}

#' @export
plot.oes <- function(x, which=7, ...){
    # This is needed, because diagnostics doesn't make sense in case of oes
    plot.smooth(x, which=which, ...);
}

#' @export
plot.oes.sim <- function(x, ...){
    ellipsis <- list(...);
    if(is.null(ellipsis$main)){
        ellipsis$main <- x$model;
    }

    if(is.null(dim(x$ot))){
        nsim <- 1;
    }
    else{
        nsim <- dim(x$ot)[2];
    }

    if(nsim==1){
        if(is.null(ellipsis$ylab)){
            ellipsis$ylab <- "Data";
        }
        ellipsis$x <- x$probability;
        do.call(plot, ellipsis);
    }
    else{
        randomNumber <- ceiling(runif(1,1,nsim));
        message(paste0("You have generated ",nsim," time series. Not sure which of them to plot.\n",
                       "Please use plot(ourSimulation$probability[,k]) instead. Plotting randomly selected series N",randomNumber,"."));
        if(is.null(ellipsis$ylab)){
            ellipsis$ylab <- paste0("Series N",randomNumber);
        }
        ellipsis$x <- x$probability[,randomNumber];
        do.call(plot, ellipsis);
    }
}


#### Prints of smooth ####
#' @export
print.smooth <- function(x, ...){
    ellipsis <- list(...);
    if(!any(names(ellipsis)=="digits")){
        digits <- 4;
    }
    else{
        digits <- ellipsis$digits;
    }
    smoothType <- smoothType(x);

    if(!is.list(x$model)){
        if(smoothType=="CMA"){
            holdout <- FALSE;
            interval <- FALSE;
            cumulative <- FALSE;
        }
        else{
            holdout <- any(!is.na(x$holdout));
            interval <- any(!is.na(x$lower));
            cumulative <- x$cumulative;
        }
    }
    else{
        holdout <- any(!is.na(x$holdout));
        interval <- any(!is.na(x$lower));
        cumulative <- x$cumulative;
    }

    if(all(holdout,interval)){
        if(!cumulative){
            insideinterval <- sum((x$holdout <= x$upper) & (x$holdout >= x$lower)) / length(x$forecast) * 100;
        }
        else{
            insideinterval <- NULL;
        }
    }
    else{
        insideinterval <- NULL;
    }

    intervalType <- x$interval;

    if(!is.null(x$model)){
        if(!is.list(x$model)){
            if(any(smoothType==c("SMA","CMA"))){
                x$probability <- 1;
                x$initialType <- "b";
                occurrence <- "n";
            }
            else if(smoothType=="ETS"){
                # If cumulative forecast and Etype=="M", report that this was "parameteric" interval
                if(cumulative & substr(modelType(x),1,1)=="M"){
                    intervalType <- "p";
                }
            }
        }
    }
    if(is.occurrence(x$occurrence)){
        occurrence <- x$occurrence$occurrence;
    }
    else{
        occurrence <- "n";
    }

    ssOutput(x$timeElapsed, x$model, persistence=x$persistence, transition=x$transition, measurement=x$measurement,
             phi=x$phi, ARterms=x$AR, MAterms=x$MA, constant=x$constant, a=x$a, b=x$b,initialType=x$initialType,
             nParam=x$nParam, s2=x$s2, hadxreg=!is.null(x$xreg), wentwild=FALSE,
             loss=x$loss, cfObjective=x$lossValue, interval=interval, cumulative=cumulative,
             intervalType=intervalType, level=x$level, ICs=x$ICs,
             holdout=holdout, insideinterval=insideinterval, errormeasures=x$accuracy,
             occurrence=occurrence, obs=nobs(x), digits=digits);
}

#' @export
print.smooth.sim <- function(x, ...){
    ellipsis <- list(...);
    if(!any(names(ellipsis)=="digits")){
        digits <- 4;
    }
    else{
        digits <- ellipsis$digits;
    }

    smoothType <- smoothType(x);
    if(is.null(dim(x$data))){
        nsim <- 1
    }
    else{
        nsim <- dim(x$data)[2]
    }

    cat(paste0("Data generated from: ",x$model,"\n"));
    cat(paste0("Number of generated series: ",nsim,"\n"));

    if(nsim==1){
        if(smoothType=="ETS"){
            cat(paste0("Persistence vector: \n"));
            xPersistence <- as.vector(x$persistence);
            names(xPersistence) <- rownames(x$persistence);
            print(round(xPersistence,digits));
            if(x$phi!=1){
                cat(paste0("Phi: ",x$phi,"\n"));
            }
            if(any(x$occurrence!=1)){
                cat(paste0("The data is produced based on an occurrence model.\n"));
            }
            cat(paste0("True likelihood: ",round(x$logLik,digits),"\n"));
        }
        else if(smoothType=="ARIMA"){
            ar.orders <- orders(x)$ar;
            i.orders <- orders(x)$i;
            ma.orders <- orders(x)$ma;
            lags <- lags(x);
            # AR terms
            if(any(ar.orders!=0)){
                ARterms <- matrix(0,max(ar.orders),sum(ar.orders!=0),
                                  dimnames=list(paste0("AR(",c(1:max(ar.orders)),")"),
                                                paste0("Lag ",lags[ar.orders!=0])));
            }
            else{
                ARterms <- matrix(0,1,1);
            }
            # Differences
            if(any(i.orders!=0)){
                Iterms <- matrix(0,1,length(i.orders),
                                 dimnames=list("I(...)",paste0("Lag ",lags)));
                Iterms[,] <- i.orders;
            }
            else{
                Iterms <- 0;
            }
            # MA terms
            if(any(ma.orders!=0)){
                MAterms <- matrix(0,max(ma.orders),sum(ma.orders!=0),
                                  dimnames=list(paste0("MA(",c(1:max(ma.orders)),")"),
                                                paste0("Lag ",lags[ma.orders!=0])));
            }
            else{
                MAterms <- matrix(0,1,1);
            }

            n.coef <- ar.coef <- ma.coef <- 0;
            ar.i <- ma.i <- 1;
            for(i in 1:length(ar.orders)){
                if(ar.orders[i]!=0){
                    ARterms[1:ar.orders[i],ar.i] <- x$AR[ar.coef+(1:ar.orders[i])];
                    ar.coef <- ar.coef + ar.orders[i];
                    ar.i <- ar.i + 1;
                }
                if(ma.orders[i]!=0){
                    MAterms[1:ma.orders[i],ma.i] <- x$MA[ma.coef+(1:ma.orders[i])];
                    ma.coef <- ma.coef + ma.orders[i];
                    ma.i <- ma.i + 1;
                }
            }

            if(!is.null(x$AR)){
                cat(paste0("AR parameters: \n"));
                print(round(ARterms,digits));
            }
            if(!is.null(x$MA)){
                cat(paste0("MA parameters: \n"));
                print(round(MAterms,digits));
            }
            if(!is.na(x$constant)){
                cat(paste0("Constant value: ",round(x$constant,digits),"\n"));
            }
            cat(paste0("True likelihood: ",round(x$logLik,digits),"\n"));
        }
        else if(smoothType=="CES"){
            cat(paste0("Smoothing parameter a: ",round(x$a,digits),"\n"));
            if(!is.null(x$b)){
                if(is.complex(x$b)){
                    cat(paste0("Smoothing parameter b: ",round(x$b,digits),"\n"));
                }
                else{
                    cat(paste0("Smoothing parameter b: ",round(x$b,digits),"\n"));
                }
            }
            cat(paste0("True likelihood: ",round(x$logLik,digits),"\n"));
        }
        else if(smoothType=="SMA"){
            cat(paste0("True likelihood: ",round(x$logLik,digits),"\n"));
        }
    }
}

#' @export
print.smooth.forecast <- function(x, ...){
    if(!any(x$interval==c("none","n"))){
        level <- x$level;
        if(level>1){
            level <- level/100;
        }
        if(x$side=="both"){
            output <- cbind(x$mean,x$lower,x$upper);
            colnames(output) <- c("Point forecast",
                                  paste0("Lower bound (",(1-level)/2*100,"%)"),
                                  paste0("Upper bound (",(1+level)/2*100,"%)"));
        }
        else if(x$side=="upper"){
            output <- cbind(x$mean,x$upper);
            colnames(output) <- c("Point forecast",
                                  paste0("Upper bound (",level*100,"%)"));
        }
        else if(x$side=="lower"){
            output <- cbind(x$mean,x$lower);
            colnames(output) <- c("Point forecast",
                                  paste0("Lower bound (",level*100,"%)"));
        }
    }
    else{
        output <- x$mean;
    }
    print(output);
}

#' @export
print.oes <- function(x, ...){
    ellipsis <- list(...);
    if(!any(names(ellipsis)=="digits")){
        digits <- 4;
    }
    else{
        digits <- ellipsis$digits;
    }

    occurrence <- x$occurrence
    if(occurrence=="general"){
        occurrence <- "General";
    }
    else if(occurrence=="direct"){
        occurrence <- "Direct probability";
    }
    else if(occurrence=="fixed"){
        occurrence <- "Fixed probability";
    }
    else if(occurrence=="inverse-odds-ratio"){
        occurrence <- "Inverse odds ratio";
    }
    else if(occurrence=="odds-ratio"){
        occurrence <- "Odds ratio";
    }
    else{
        occurrence <- "None";
    }
    ICs <- round(c(AIC(x),AICc(x),BIC(x),BICc(x)),digits);
    names(ICs) <- c("AIC","AICc","BIC","BICc");
    cat(paste0("Occurrence state space model estimated: ",occurrence,"\n"));
    if(!is.null(x$model)){
        cat(paste0("Underlying ETS model: ",x$model,"\n"));
    }
    if(!is.null(x$persistence) && (x$occurrence!="fixed")){
        cat("Smoothing parameters:\n");
        print(round(x$persistence[,1],digits));
    }
    if(!is.null(x$initial)){
        cat("Vector of initials:\n");
        print(round(x$initial,digits));
    }
    if(!is.null(sigma(x))){
        cat("\nError standard deviation: "); cat(round(sigma(x),digits));
    }
    cat("\nSample size: "); cat(nobs(x));
    cat("\nNumber of estimated parameters: "); cat(nparam(x));
    cat("\nNumber of degrees of freedom: "); cat(nobs(x)-nparam(x));
    cat("\nInformation criteria: \n");
    print(ICs);
}

#' @export
print.oes.sim <- function(x, ...){
    ellipsis <- list(...);
    if(!any(names(ellipsis)=="digits")){
        digits <- 4;
    }
    else{
        digits <- ellipsis$digits;
    }

    if(is.null(dim(x$ot))){
        nsim <- 1;
        obs <- length(x$ot)
    }
    else{
        nsim <- dim(x$ot)[2];
        obs <- dim(x$ot)[1];
    }

    cat(paste0("Data generated from: ",x$model,"\n"));
    cat(paste0("Number of generated series: ",nsim,"\n"));
    cat(paste0("Number of observations in each series: ",obs,"\n"));

    if(nsim==1){
        cat(paste0("True likelihood: ",round(x$logLik,digits),"\n"));
    }
}

#### Residuals for provided object ####
#' @export
residuals.smooth <- function(object, ...){
    if(errorType(object)=="A"){
        return(object$residuals);
    }
    else{
        return(log(1+object$residuals));
    }
}

#' @importFrom stats rstandard
#' @export
rstandard.smooth <- function(model, ...){
    obs <- nobs(model);
    df <- obs - nparam(model);

    # If this is an occurrence model, then only modify the non-zero obs
    if(is.occurrence(model$occurrence)){
        residsToGo <- (actuals(model$occurrence)!=0);
    }
    else{
        residsToGo <- rep(TRUE,obs);
    }

    errors <- residuals(model, ...);
    errors[] <- (errors - mean(errors[residsToGo], na.rm=TRUE)) / sqrt(sigma(model)^2 * obs / df);
    # Fill in values with NAs if there is occurrence model
    if(is.occurrence(model$occurrence)){
        errors[!residsToGo] <- NA;
    }
    return(errors);
}

#' @importFrom stats rstudent
#' @export
rstudent.smooth <- function(model, ...){
    obs <- nobs(model);
    df <- obs - nparam(model) - 1;
    # If this is an occurrence model, then only modify the non-zero obs
    if(is.occurrence(model$occurrence)){
        residsToGo <- (actuals(model$occurrence)!=0);
    }
    else{
        residsToGo <- rep(TRUE,obs);
    }
    rstudentised <- errors <- residuals(model, ...);
    errors[] <- errors - mean(errors, na.rm=TRUE);
    # Prepare the residuals
    if(errorType(model)=="M"){
        for(i in which(residsToGo)){
            rstudentised[i] <- errors[i] / sqrt(sum(errors[-i]^2, na.rm=TRUE) / df);
        }
    }
    else{
        for(i in which(residsToGo)){
            rstudentised[i] <- errors[i] / sqrt(sum(errors[-i]^2, na.rm=TRUE) / df);
        }
    }
    # Fill in values with NAs if there is occurrence model
    if(is.occurrence(model$occurrence)){
        rstudentised[!residsToGo] <- NA;
    }

    return(rstudentised);
}

#' @importFrom greybox outlierdummy
#' @export
outlierdummy.smooth <- function(object, level=0.999, type=c("rstandard","rstudent"), ...){
    # Function returns the matrix of dummies with outliers
    type <- match.arg(type);
    errors <- switch(type,"rstandard"=rstandard(object),"rstudent"=rstudent(object));
    statistic <- switch(object$loss,
                      "MAE"=,"MAEh"=,"MACE"=,"TMAE"=,"GTMAE"=qlaplace(c((1-level)/2, (1+level)/2), 0, 1),
                      "HAM"=,"HAMh"=,"CHAM"=,"THAM"=,"GTHAM"=qs(c((1-level)/2, (1+level)/2), 0, 1),
                      qnorm(c((1-level)/2, (1+level)/2), 0, 1));

    outliersID <- which(errors>statistic[2] | errors<statistic[1]);
    outliersNumber <- length(outliersID);
    if(outliersNumber>0){
        outliers <- ts(matrix(0, nobs(object), outliersNumber,
                              dimnames=list(NULL,
                                            paste0("outlier",c(1:outliersNumber)))),
                       start=start(actuals(object)), frequency=frequency(actuals(object)));
        outliers[cbind(outliersID,c(1:outliersNumber))] <- 1;
    }
    else{
        outliers <- NULL;
    }

    return(structure(list(outliers=outliers, statistic=statistic, id=outliersID,
                          level=level, type=type),
                     class="outlierdummy"));
}

#' @export
rmultistep.smooth <- function(object, h=10, ...){
    yInSample <- actuals(object);
    model <- modelType(object);
    Etype <- errorType(object);
    Ttype <- substr(model,2,2);
    Stype <- substr(model,nchar(model),nchar(model));
    lagsModel <- modelLags(object);
    obsInSample <- nobs(object);

    matxt <- object$xreg;
    if(is.null(object$xreg)){
        matxt <- matrix(1,obsInSample,1);
    }
    nXreg <- ncol(matxt);
    if(is.null(object$xreg)){
        matat <- matrix(1,obsInSample,1);
    }
    else{
        matat <- matrix(object$initialX,obsInSample,nXreg,byrow=TRUE);
    }
    matFX <- diag(nXreg);
    dataStart <- start(yInSample);
    dataFreq <- frequency(yInSample);

    errors.mat <- ts(errorerwrap(object$states, object$transition, object$measurement, matrix(yInSample,obsInSample,1),
                                 h, Etype, Ttype, Stype, lagsModel,
                                 matxt, matat, matFX, matrix(1,obsInSample,1)),
                     start=dataStart,frequency=dataFreq);
    colnames(errors.mat) <- paste0("Error",c(1:h));
    return(errors.mat);
}

#### Simulate data using provided object ####
#' @importFrom utils tail
#' @export
simulate.smooth <- function(object, nsim=1, seed=NULL, obs=NULL, ...){
    ellipsis <- list(...);
    smoothType <- smoothType(object);
    if(is.null(obs)){
        obs <- nobs(object);
    }
    if(!is.null(seed)){
        set.seed(seed);
    }

    # Start a list of arguments
    args <- vector("list",0);

    loss <- object$loss;
    if(any(loss==c("MAE","MAEh","TMAE","GTMAE","MACE"))){
        randomizer <- "rlaplace";
        if(!is.null(ellipsis$mu)){
            args$mu <- ellipsis$mu;
        }
        else{
            args$mu <- 0;
        }

        if(!is.null(ellipsis$scale)){
            args$scale <- ellipsis$scale;
        }
        else{
            args$scale <- mean(abs(residuals(object)));
        }
    }
    else if(any(loss==c("HAM","HAMh","THAM","GTHAM","CHAM"))){
        randomizer <- "rs";
        if(!is.null(ellipsis$mu)){
            args$mu <- ellipsis$mu;
        }
        else{
            args$mu <- 0;
        }

        if(!is.null(ellipsis$scale)){
            args$scale <- ellipsis$scale;
        }
        else{
            args$scale <- mean(sqrt(abs(residuals(object))));
        }
    }
    else{
        randomizer <- "rnorm";
        if(!is.null(ellipsis$mean)){
            args$mean <- ellipsis$mean;
        }
        else{
            args$mean <- 0;
        }

        if(!is.null(ellipsis$sd)){
            args$sd <- ellipsis$sd;
        }
        else{
            args$sd <- sigma(object);
        }
    }
    args$randomizer <- randomizer;
    args$frequency <- frequency(actuals(object));
    args$obs <- obs;
    args$nsim <- nsim;
    args$initial <- object$initial;
    # If this is an occurrence model, use the fitted values for the probabilities
    if(is.occurrence(object$occurrence)){
        args$probability <- fitted(object$occurrence);
    }
    else{
        args$probability <- 1;
    }

    if(smoothType=="ETS"){
        model <- modelType(object);
        if(any(unlist(gregexpr("C",model))==-1)){
            args$model <- model;
            args$phi <- object$phi;
            args$persistence <- object$persistence;
            if(is.list(args$initial)){
                args$initialSeason <- object$initial$seasonal;
                args$initial <- unlist(args$initial[c("level","trend")]);
            }

            if(errorType(object)=="M" && args$mean==0){
                args$mean <- 1;
            }

            simulatedData <- do.call("sim.es",args);
        }
        else{
            message("Sorry, but we cannot simulate data from combined model.");
            simulatedData <- NA;
        }
    }
    else if(smoothType=="ARIMA"){
        if(any(unlist(gregexpr("combine",object$model))==-1)){
            args$orders <- orders(object);
            args$lags <- lags(object);
            args$AR <- object$AR;
            args$MA <- object$MA;
            args$constant <- object$constant;

            simulatedData <- do.call("sim.ssarima",args);
        }
        else{
            message("Sorry, but we cannot simulate data from combined model.");
            simulatedData <- NA;
        }
    }
    else if(smoothType=="CES"){
        args$seasonality <- modelType(object);
        args$a <- object$a;
        args$b <- object$b;

        simulatedData <- do.call("sim.ces",args);
    }
    else if(smoothType=="GUM"){
        args$orders <- orders(object);
        args$lags <- lags(object);
        args$measurement <- object$measurement;
        args$transition <- object$transition;
        args$persistence <- object$persistence;

        simulatedData <- do.call("sim.gum",args);
    }
    else if(smoothType=="SMA"){
        args$order <- orders(object)[1];

        simulatedData <- do.call("sim.sma",args);
    }
    else{
        model <- substring(object$model,1,unlist(gregexpr("\\(",object$model))[1]-1);
        message(paste0("Sorry, but simulate is not yet available for the model ",model,"."));
        simulatedData <- NA;
    }
    return(simulatedData);
}

#### Type of smooth model. Internal function ####
smoothType <- function(object, ...){
    if(!is.list(object$model)){
        if(gregexpr("ETS",object$model)!=-1){
            smoothType <- "ETS";
        }
        else if(gregexpr("CES",object$model)!=-1){
            smoothType <- "CES";
        }
        else if(gregexpr("ARIMA",object$model)!=-1){
            smoothType <- "ARIMA";
        }
        else if(gregexpr("GUM",object$model)!=-1){
            smoothType <- "GUM";
        }
        else if(gregexpr("SMA",object$model)!=-1){
            smoothType <- "SMA";
        }
        else if(gregexpr("CMA",object$model)!=-1){
            smoothType <- "CMA";
        }
        else if(gregexpr("VES",object$model)!=-1){
            smoothType <- "VES";
        }
        else{
            smoothType <- NA;
        }
    }
    else{
        smoothType <- "smoothCombine";
    }

    return(smoothType);
}

#### Summary of objects ####
#' @export
summary.smooth <- function(object, ...){
    print(object);
}

#' @export
summary.smooth.forecast <- function(object, ...){
    print(object);
}


#### Accuracy measures ####

#' @importFrom generics accuracy
#' @export
generics::accuracy

#' Error measures for an estimated model
#'
#' Function produces error measures for the provided object and the holdout values of the
#' response variable. Note that instead of parameters \code{x}, \code{test}, the function
#' accepts the vector of values in \code{holdout}. Also, the parameters \code{d} and \code{D}
#' are not supported - MASE is always calculated via division by first differences.
#'
#' The function is a wrapper for the \link[greybox]{measures} function and is implemented
#' for convenience.
#'
#' @template ssAuthor
#'
#' @param object The estimated model or a forecast from the estimated model generated via
#' either \code{predict()} or \code{forecast()} functions.
#' @param holdout The vector of values of the response variable in the holdout (test) set.
#' If not provided, then the function will return the in-sample error measures. If the
#' \code{holdout=TRUE} parameter was used in the estimation of a model, the holdout values
#' will be extracted automatically.
#' @param ... Other variables passed to the \code{forecast()} function (e.g. \code{newdata}).
#' @examples
#'
#' y <- rnorm(100, 100, 10)
#' ourModel <- adam(y, holdout=TRUE, h=10)
#' accuracy(ourModel)
#'
#' @rdname accuracy
#' @export
accuracy.smooth <- function(object, holdout=NULL, ...){
    if(is.null(object$holdout)){
        if(is.null(holdout)){
            return(measures(actuals(object), fitted(object), actuals(object)));
        }
        else{
            h <- length(holdout);
            return(measures(holdout, forecast(object, h=h, ...)$mean, actuals(object)));
        }
    }
    else{
        return(object$accuracy);
    }
}

#' @rdname accuracy
#' @export
accuracy.smooth.forecast <- function(object, holdout=NULL, ...){
    if(is.null(holdout)){
        if(is.null(object$model$holdout)){
            return(measures(actuals(object), fitted(object), actuals(object)));
        }
        else{
            return(object$model$accuracy);
        }
    }
    else{
        h <- length(holdout);
        return(measures(holdout, object$mean, actuals(object)));
    }
}

Try the smooth package in your browser

Any scripts or data that you put into this service are public.

smooth documentation built on Oct. 1, 2024, 5:07 p.m.