R/ml_clustering_kmeans.R

Defines functions new_ml_kmeans_summary new_ml_kmeans_model new_ml_kmeans validator_ml_kmeans ml_kmeans.tbl_spark ml_kmeans.ml_pipeline ml_kmeans.spark_connection ml_kmeans

Documented in ml_kmeans

#' @include ml_clustering.R
#' @include ml_model_helpers.R
#' @include utils.R
NULL

#' Spark ML -- K-Means Clustering
#'
#' K-means clustering with support for k-means|| initialization proposed by Bahmani et al.
#'   Using `ml_kmeans()` with the formula interface requires Spark 2.0+.
#'
#' @template roxlate-ml-clustering-algo
#' @template roxlate-ml-clustering-params
#' @template roxlate-ml-tol
#' @template roxlate-ml-prediction-col
#' @template roxlate-ml-formula-params
#' @param init_steps Number of steps for the k-means|| initialization mode. This is an advanced setting -- the default of 2 is almost always enough. Must be > 0. Default: 2.
#' @param init_mode Initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++ (Bahmani et al., Scalable K-Means++, VLDB 2012). Default: k-means||.
#'
#' @examples
#' \dontrun{
#' sc <- spark_connect(master = "local")
#' iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
#' ml_kmeans(iris_tbl, Species ~ .)
#' }
#'
#' @export
ml_kmeans <- function(x, formula = NULL, k = 2, max_iter = 20, tol = 1e-4,
                      init_steps = 2, init_mode = "k-means||", seed = NULL,
                      features_col = "features", prediction_col = "prediction",
                      uid = random_string("kmeans_"), ...) {
  check_dots_used()
  UseMethod("ml_kmeans")
}

#' @export
ml_kmeans.spark_connection <- function(x, formula = NULL, k = 2, max_iter = 20, tol = 1e-4,
                                       init_steps = 2, init_mode = "k-means||", seed = NULL,
                                       features_col = "features", prediction_col = "prediction",
                                       uid = random_string("kmeans_"), ...) {
  .args <- list(
    k = k,
    max_iter = max_iter,
    tol = tol,
    init_steps = init_steps,
    init_mode = init_mode,
    seed = seed,
    features_col = features_col,
    prediction_col = prediction_col
  ) %>%
    c(rlang::dots_list(...)) %>%
    validator_ml_kmeans()

  jobj <- spark_pipeline_stage(
    x, "org.apache.spark.ml.clustering.KMeans", uid,
    features_col = .args[["features_col"]], k = .args[["k"]],
    max_iter = .args[["max_iter"]], seed = .args[["seed"]]
  ) %>%
    invoke("setTol", .args[["tol"]]) %>%
    invoke("setInitSteps", .args[["init_steps"]]) %>%
    invoke("setInitMode", .args[["init_mode"]]) %>%
    invoke("setPredictionCol", .args[["prediction_col"]])

  new_ml_kmeans(jobj)
}

#' @export
ml_kmeans.ml_pipeline <- function(x, formula = NULL, k = 2, max_iter = 20, tol = 1e-4,
                                  init_steps = 2, init_mode = "k-means||", seed = NULL,
                                  features_col = "features", prediction_col = "prediction",
                                  uid = random_string("kmeans_"), ...) {
  stage <- ml_kmeans.spark_connection(
    x = spark_connection(x),
    formula = formula,
    k = k,
    max_iter = max_iter,
    tol = tol,
    init_steps = init_steps,
    init_mode = init_mode,
    seed = seed,
    features_col = features_col,
    prediction_col = prediction_col,
    uid = uid,
    ...
  )
  ml_add_stage(x, stage)
}

#' @export
ml_kmeans.tbl_spark <- function(x, formula = NULL, k = 2, max_iter = 20, tol = 1e-4,
                                init_steps = 2, init_mode = "k-means||", seed = NULL,
                                features_col = "features", prediction_col = "prediction",
                                uid = random_string("kmeans_"), features = NULL, ...) {
  formula <- ml_standardize_formula(formula, features = features)

  stage <- ml_kmeans.spark_connection(
    x = spark_connection(x),
    formula = NULL,
    k = k,
    max_iter = max_iter,
    tol = tol,
    init_steps = init_steps,
    init_mode = init_mode,
    seed = seed,
    features_col = features_col,
    prediction_col = prediction_col,
    uid = uid,
    ...
  )

  if (is.null(formula)) {
    stage %>%
      ml_fit(x)
  } else {
    ml_construct_model_clustering(
      new_ml_model_kmeans,
      predictor = stage,
      dataset = x,
      formula = formula,
      features_col = features_col
    )
  }
}

# Validator
validator_ml_kmeans <- function(.args) {
  .args <- validate_args_clustering(.args)
  .args[["tol"]] <- cast_scalar_double(.args[["tol"]])
  .args[["init_steps"]] <- cast_scalar_integer(.args[["init_steps"]])
  .args[["init_mode"]] <- cast_choice(.args[["init_mode"]], c("random", "k-means||"))
  .args[["prediction_col"]] <- cast_string(.args[["prediction_col"]])
  .args
}

new_ml_kmeans <- function(jobj) {
  new_ml_estimator(jobj, class = "ml_kmeans")
}

new_ml_kmeans_model <- function(jobj) {
  summary <- possibly_null(~ new_ml_kmeans_summary(invoke(jobj, "summary")))()
  kmeans_model <- new_ml_clustering_model(
    jobj,
    # `def clusterCenters`
    cluster_centers = possibly_null(
      ~ invoke(jobj, "clusterCenters") %>%
        purrr::map(invoke, "toArray")
    ),
    summary = summary,
    class = "ml_kmeans_model"
  )

  if (!is_required_spark(jobj, "3.0.0")) {
    kmeans_model[["compute_cost"]] <- function(dataset) {
      invoke(jobj, "computeCost", spark_dataframe(dataset))
    }
  } else {
    sc <- spark_connection(jobj)
    clustering_evaluator_jobj <- invoke_new(
      sc, "org.apache.spark.ml.evaluation.ClusteringEvaluator"
    )
    clustering_evaluator_jobj %>% invoke(
      "%>%",
      list("setFeaturesCol", jobj %>% invoke("getFeaturesCol")),
      list("setPredictionCol", jobj %>% invoke("getPredictionCol"))
    )
    weight_col_param <- jobj %>% invoke("weightCol")
    if (jobj %>% invoke("isSet", weight_col_param)) {
      clustering_evaluator_jobj %>% invoke(
        "setWeightCol", jobj %>% invoke("getWeightCol")
      )
    }
    kmeans_model[["compute_silhouette_measure"]] <- function(dataset, distance_measure) {
      clustering_evaluator_jobj %>% invoke("setDistanceMeasure", distance_measure)
      dataset <- jobj %>% invoke("transform", spark_dataframe(dataset))
      invoke(clustering_evaluator_jobj, "evaluate", dataset)
    }
  }

  kmeans_model
}

new_ml_kmeans_summary <- function(jobj) {
  kmeans_summary <- new_ml_clustering_summary(
    jobj,
    class = "ml_kmeans_summary"
  )

  if (is_required_spark(jobj, "2.4.0")) {
    kmeans_summary[["training_cost"]] <- invoke(jobj, "trainingCost")
  }

  kmeans_summary
}

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on Jan. 8, 2022, 5:06 p.m.