R/ml_model_gradient_boosted_trees.R

Defines functions new_ml_model_gbt_regression new_ml_model_gbt_classification ml_gradient_boosted_trees

Documented in ml_gradient_boosted_trees

#' Spark ML -- Gradient Boosted Trees
#'
#' Perform binary classification and regression using gradient boosted trees. Multiclass classification is not supported yet.
#'
#' @template roxlate-ml-algo
#' @template roxlate-ml-decision-trees-base-params
#' @template roxlate-ml-formula-params
#' @template roxlate-ml-feature-subset-strategy
#' @param max_iter Maxmimum number of iterations.
#' @param step_size Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator. (default = 0.1)
#' @param subsampling_rate Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)
#' @param loss_type Loss function which GBT tries to minimize. Supported: \code{"squared"} (L2) and \code{"absolute"} (L1) (default = squared) for regression and \code{"logistic"} (default) for classification. For \code{ml_gradient_boosted_trees}, setting \code{"auto"}
#'   will default to the appropriate loss type based on model type.
#' @name ml_gradient_boosted_trees
NULL

#' @rdname ml_gradient_boosted_trees
#' @template roxlate-ml-decision-trees-type
#' @details \code{ml_gradient_boosted_trees} is a wrapper around \code{ml_gbt_regressor.tbl_spark} and \code{ml_gbt_classifier.tbl_spark} and calls the appropriate method based on model type.
#' @template roxlate-ml-old-feature-response
#'
#' @examples
#' \dontrun{
#' sc <- spark_connect(master = "local")
#' iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
#'
#' partitions <- iris_tbl %>%
#'   sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
#'
#' iris_training <- partitions$training
#' iris_test <- partitions$test
#'
#' gbt_model <- iris_training %>%
#'   ml_gradient_boosted_trees(Sepal_Length ~ Petal_Length + Petal_Width)
#'
#' pred <- ml_predict(gbt_model, iris_test)
#'
#' ml_regression_evaluator(pred, label_col = "Sepal_Length")
#' }
#'
#' @export
ml_gradient_boosted_trees <- function(x, formula = NULL,
                                      type = c("auto", "regression", "classification"),
                                      features_col = "features", label_col = "label",
                                      prediction_col = "prediction", probability_col = "probability",
                                      raw_prediction_col = "rawPrediction", checkpoint_interval = 10,
                                      loss_type = c("auto", "logistic", "squared", "absolute"),
                                      max_bins = 32, max_depth = 5, max_iter = 20L,
                                      min_info_gain = 0, min_instances_per_node = 1,
                                      step_size = 0.1, subsampling_rate = 1, feature_subset_strategy = "auto",
                                      seed = NULL, thresholds = NULL, cache_node_ids = FALSE,
                                      max_memory_in_mb = 256, uid = random_string("gradient_boosted_trees_"),
                                      response = NULL, features = NULL, ...) {
  formula <- ml_standardize_formula(formula, response, features)
  response_col <- gsub("~.+$", "", formula) %>% trimws()

  sdf <- spark_dataframe(x)
  # choose classification vs. regression model based on column type
  schema <- sdf_schema(sdf)
  response_type <- schema[[response_col]]$type

  type <- rlang::arg_match(type)
  model_type <- if (!identical(type, "auto")) {
    type
  } else {
    if (response_type %in% c("DoubleType", "IntegerType")) {
      "regression"
    } else {
      "classification"
    }
  }

  loss_type <- rlang::arg_match(loss_type)
  loss_type <- if (identical(loss_type, "auto")) {
    if (identical(model_type, "classification")) "logistic" else "squared"
  } else if (identical(model_type, "regression")) {
    if (!loss_type %in% c("squared", "absolute")) {
      stop("`loss_type` must be \"squared\" or \"absolute\" for regression.")
    }
    loss_type
  } else {
    if (!identical(loss_type, "logistic")) {
      stop("`loss_type` must be \"logistic\" for classification.")
    }
    loss_type
  }

  if (spark_version(spark_connection(x)) < "2.2.0" && !is.null(thresholds)) {
    stop("`thresholds` is only supported for GBT in Spark 2.2.0+.")
  }

  switch(
    model_type,
    regression = ml_gbt_regressor(
      x = x,
      formula = formula,
      max_iter = max_iter,
      max_depth = max_depth,
      step_size = step_size,
      subsampling_rate = subsampling_rate,
      feature_subset_strategy = feature_subset_strategy,
      min_instances_per_node = min_instances_per_node,
      max_bins = max_bins,
      min_info_gain = min_info_gain,
      loss_type = loss_type,
      seed = seed,
      checkpoint_interval = checkpoint_interval,
      cache_node_ids = cache_node_ids,
      max_memory_in_mb = max_memory_in_mb,
      features_col = features_col,
      label_col = label_col,
      prediction_col = prediction_col,
      uid = uid,
      ...
    ),
    classification = ml_gbt_classifier(
      x = x,
      formula = formula,
      max_iter = max_iter,
      max_depth = max_depth,
      step_size = step_size,
      subsampling_rate = subsampling_rate,
      feature_subset_strategy = feature_subset_strategy,
      min_instances_per_node = min_instances_per_node,
      max_bins = max_bins,
      min_info_gain = min_info_gain,
      loss_type = loss_type,
      seed = seed,
      thresholds = thresholds,
      checkpoint_interval = checkpoint_interval,
      cache_node_ids = cache_node_ids,
      max_memory_in_mb = max_memory_in_mb,
      features_col = features_col,
      label_col = label_col,
      prediction_col = prediction_col,
      probability_col = probability_col,
      raw_prediction_col = raw_prediction_col,
      uid = uid,
      ...
    )
  )
}

new_ml_model_gbt_classification <- function(pipeline_model, formula, dataset, label_col,
                                            features_col, predicted_label_col) {
  new_ml_model_classification(
    pipeline_model, formula,
    dataset = dataset,
    label_col = label_col, features_col = features_col,
    predicted_label_col = predicted_label_col,
    class = "ml_model_gbt_classification"
  )
}

new_ml_model_gbt_regression <- function(pipeline_model, formula, dataset, label_col,
                                        features_col) {
  new_ml_model_regression(
    pipeline_model, formula,
    dataset = dataset,
    label_col = label_col, features_col = features_col,
    class = "ml_model_gbt_regression"
  )
}

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on Jan. 8, 2022, 5:06 p.m.