Nothing
new_ml_model_linear_regression <- function(pipeline_model, formula, dataset, label_col,
features_col) {
m <- new_ml_model_regression(
pipeline_model, formula,
dataset = dataset,
label_col = label_col, features_col = features_col,
class = "ml_model_linear_regression"
)
model <- m$model
jobj <- spark_jobj(model)
coefficients <- model$coefficients
names(coefficients) <- m$feature_names
m$coefficients <- if (ml_param(model, "fit_intercept")) {
rlang::set_names(
c(invoke(jobj, "intercept"), model$coefficients),
c("(Intercept)", m$feature_names)
)
} else {
coefficients
}
m$summary <- model$summary
m
}
# Generic implementations
#' @export
print.ml_model_linear_regression <- function(x, ...) {
cat("Formula: ", x$formula, "\n\n", sep = "")
cat("Coefficients:", sep = "\n")
print(x$coefficients)
}
#' @export
summary.ml_model_linear_regression <- function(object, ...) {
ml_model_print_residuals(object, residuals.header = "Deviance Residuals")
print_newline()
ml_model_print_coefficients_detailed(object)
print_newline()
cat(paste("R-Squared:", signif(object$summary$r2, 4)), sep = "\n")
cat(paste(
"Root Mean Squared Error:",
signif(object$summary$root_mean_squared_error, 4)
), sep = "\n")
}
#' @export
residuals.ml_model_linear_regression <- function(object, ...) {
residuals <- object$summary$residuals
sdf_read_column(residuals, "residuals")
}
#' @export
#' @rdname sdf_residuals
sdf_residuals.ml_model_linear_regression <- function(object, ...) {
residuals <- object$summary$residuals
ml_model_data(object) %>%
sdf_fast_bind_cols(residuals)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.