Nothing
set.seed(42)
sim1 <- function(n = 5e2) {
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
lp <- x2*x1 + cos(x1)
yb <- rbinom(n, 1, lava::expit(lp))
y <- lp + rnorm(n, sd = 0.5**.5)
return(data.frame(y, yb, x1, x2))
}
d <- sim1(1e4)
nthreads = getOption("Ncpus", 1L)
test_learner_xgboost <- function() {
params <- list(
max_depth = 3,
learning_rate = 0.5,
subsample = 1.0,
reg_lambda = 1.0,
nthread = nthreads,
objective = "reg:squarederror"
)
args <- c(
params,
list(formula = y ~ x1 + x2, nrounds = 3L)
)
lr <- do.call(learner_xgboost, args)
lr$estimate(d)
# all parameters are passed on correctly
expect_equal(attributes(lr$fit)$params[names(params)], params)
# parameters can be overwritten in method call
lr$estimate(d, learning_rate = 1)
expect_equal(attributes(lr$fit)$params$learning_rate, 1)
# arguments can be passed on to predict s3 function
pr1 <- lr$predict(head(d)) # use trees from all rounds for predictions
# use only trees from first 2 boosting rounds for predictions
pr2 <- lr$predict(head(d), iterationrange = c(1, 2))
expect_false(all(pr1 == pr2))
# verify that arguments can be passed on correctly to learner$new
lr <- learner_xgboost(y ~ ., nrounds = 3, nthread = nthreads,
learner.args = list(predict.args = list(iterationrange = c(1, 2)))
)
lr$estimate(d)
# iterationrange = NULL is the default for predict.xgb.Booster.
# this test verifies that 1. learner.args are passed on correctly
# 2. the supplied predict.args can be overruled in predict method call
expect_false(
all(lr$predict(head(d)) == lr$predict(head(d), iterationrange = NULL))
)
# test support for multi-class classification / verifies that objective
# argument is handled correctly
d0 <- iris
d0$y <- as.numeric(d0$Species)- 1
lr <- learner_xgboost(y ~ .,
objective = "multi:softprob", num_class = 3,
nthread = nthreads
)
lr$estimate(d0)
expect_equal(dim(lr$predict(d0)), c(nrow(d0), 3))
# binary classification with binary:logistic
lr <- learner_xgboost(yb ~ x1 + x2,
objective = "binary:logistic",
nthread = nthreads
)
lr$estimate(d)
pr <- lr$predict(head(d))
expect_true(is.vector(pr))
# binary classification with objective = "multi:softprob"
lr <- learner_xgboost(yb ~ x1 + x2,
objective = "multi:softprob",
num_class = 2,
nthread = nthreads
)
lr$estimate(d)
# preserve output format of predict.xgb.Booster
expect_equal(dim(lr$predict(head(d))), c(6, 2))
}
test_learner_xgboost()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.