# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_rl.py
library(sagemaker.core)
library(sagemaker.common)
library(sagemaker.mlcore)
DATA_DIR = file.path(getwd(), "data")
SCRIPT_PATH =file.path(DATA_DIR, "dummy_script.py")
TAR_FILE <- file.path(DATA_DIR, "test_tar.tgz")
BIN_OBJ <- readBin(con = TAR_FILE, what = "raw", n = file.size(TAR_FILE))
TIMESTAMP = "2017-11-06-14:14:15.672"
TIME = 1510006209.073025
BUCKET_NAME = "notmybucket"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.c4.4xlarge"
IMAGE_URI = "sagemaker-rl"
IMAGE_URI_FORMAT_STRING = "520713654638.dkr.ecr.%s.amazonaws.com/%s-%s:%s%s-%s-py3"
PYTHON_VERSION = "py3"
ROLE = "Dummy"
REGION = "us-west-2"
GPU = "ml.p2.xlarge"
CPU = "ml.c4.xlarge"
coach_tensorflow_version = "0.10"
coach_mxnet_version = "0.11.0"
ray_tensorflow_version = "0.8.5"
ENDPOINT_DESC = list("EndpointConfigName"="test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"=list(list("ModelName"="model-1"), list("ModelName"="model-2")))
LIST_TAGS_RESULT = list("Tags"=list(list("Key"="TagtestKey", "Value"="TagtestValue")))
EXPERIMENT_CONFIG = list(
"ExperimentName"="exp",
"TrialName"="trial",
"TrialComponentDisplayName"="tc")
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
s3_client$.call_args("get_object", list(Body = BIN_OBJ))
sagemaker_client <- Mock$new()
describe = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/m.tar.gz"))
describe_compilation = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/model_c5.tar.gz"))
sagemaker_client$.call_args("describe_training_job", describe)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("list_tags", LIST_TAGS_RESULT)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-rl-dummy"))
sms$.call_args("create_model", "sagemaker-rl")
sms$.call_args("endpoint_from_production_variants", "sagemaker-rl-endpoint")
sms$.call_args("logs_for_job")
sms$.call_args("wait_for_job")
sms$.call_args("wait_for_compilation_job", describe_compilation)
sms$.call_args("compile_model")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
.get_full_cpu_image_uri = function(toolkit, toolkit_version, framework){
return(sprintf(IMAGE_URI_FORMAT_STRING,
REGION, IMAGE_URI, framework, toolkit, toolkit_version, "cpu")
)
}
.create_train_job = function(toolkit, toolkit_version, framework){
job_name = sprintf("%s-%s-.*", IMAGE_URI, framework)
return(list(
"image_uri"=.get_full_cpu_image_uri(toolkit, toolkit_version, framework),
"input_mode"="File",
"input_config"=list(
list(
"DataSource"=list(
"S3DataSource"=list(
"S3DataType"="S3Prefix",
"S3Uri"=NULL,
"S3DataDistributionType"="FullyReplicated")
),
"ChannelName"="training"
)
),
"role"=ROLE,
"job_name"=job_name,
"output_config"=list("S3OutputPath"=sprintf("s3://%s/",BUCKET_NAME)),
"resource_config"=list(
"InstanceCount"=1,
"InstanceType"="ml.c4.4xlarge",
"VolumeSizeInGB"=30),
"hyperparameters"=list(
"sagemaker_submit_directory"=sprintf(
"s3://%s/%s/source/sourcedir.tar.gz", BUCKET_NAME, job_name),
"sagemaker_program"="dummy_script.py",
"sagemaker_container_log_level"="20",
"sagemaker_job_name"=job_name,
"sagemaker_region"='us-west-2',
"sagemaker_s3_output"=sprintf('s3://%s/',BUCKET_NAME),
"sagemaker_estimator"='RLEstimator'),
"stop_condition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"vpc_config"=NULL,
"metric_definitions"=list(
list("Name"="reward-training", "Regex"="^Training>.*Total reward=(.*?),"),
list("Name"="reward-testing", "Regex"="^Testing>.*Total reward=(.*?),")),
"experiment_config"=NULL,
"debugger_hook_config"=list(
"S3OutputPath"=sprintf("s3://%s/",BUCKET_NAME),
"CollectionConfigurations"=list()
),
"profiler_rule_configs"=list(
list(
"RuleConfigurationName"="ProfilerReport-.*",
"RuleEvaluatorImage"="895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-debugger-rules:latest",
"RuleParameters"=list("rule_to_invoke"="ProfilerReport")
)
),
"profiler_config"=list(
"S3OutputPath"=sprintf("s3://%s/",BUCKET_NAME)
)
)
)
}
.rl_estimator = function(
sagemaker_session,
toolkit=RLToolkit$COACH,
toolkit_version=RLEstimator$public_fields$COACH_LATEST_VERSION_MXNET,
framework=RLFramework$MXNET,
instance_type=NULL,
base_job_name=NULL,
...){
`%||%` <- sagemaker.mlframework:::`%||%`
return(RLEstimator$new(
entry_point=SCRIPT_PATH,
toolkit=toolkit,
toolkit_version=toolkit_version,
framework=framework,
role=ROLE,
sagemaker_session=sagemaker_session,
instance_count=INSTANCE_COUNT,
instance_type=instance_type %||% INSTANCE_TYPE,
base_job_name=base_job_name,
...)
)
}
test_that("test create rl model", {
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
rl = RLEstimator$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
toolkit=RLToolkit$COACH,
toolkit_version=coach_tensorflow_version,
framework=RLFramework$TENSORFLOW,
container_log_level=container_log_level,
source_dir=source_dir)
rl$fit(inputs="s3://mybucket/train", job_name="new_name")
model = rl$create_model()
supported_versions = sagemaker.mlframework:::TOOLKIT_FRAMEWORK_VERSION_MAP[[RLToolkit$COACH]]
framework_version = supported_versions[[coach_tensorflow_version]][[RLFramework$TENSORFLOW]]
expect_true(inherits(model, "TensorFlowModel"))
expect_identical(model$sagemaker_session, sms)
expect_equal(model$framework_version, framework_version)
expect_equal(model$role, ROLE)
expect_equal(model$.container_log_level, 20)
expect_null(model$vpc_config)
})
test_that("test create mxnet model", {
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
rl = RLEstimator$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
toolkit=RLToolkit$COACH,
toolkit_version=coach_mxnet_version,
framework=RLFramework$MXNET,
container_log_level=container_log_level,
source_dir=source_dir)
rl$fit(inputs="s3://mybucket/train", job_name="new_name")
model = rl$create_model()
model$.container_log_level
supported_versions = sagemaker.mlframework:::TOOLKIT_FRAMEWORK_VERSION_MAP[[RLToolkit$COACH]]
framework_version = supported_versions[[coach_mxnet_version]][[RLFramework$MXNET]]
expect_true(inherits(model, "MXNetModel"))
expect_identical(model$sagemaker_session, sms)
expect_equal(model$framework_version, framework_version)
expect_equal(model$role, ROLE)
expect_equal(model$container_log_level, "20")
expect_null(model$vpc_config)
})
test_that("test create model with optional params",{
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
rl = RLEstimator$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
toolkit=RLToolkit$COACH,
toolkit_version=coach_mxnet_version,
framework=RLFramework$MXNET,
container_log_level=container_log_level,
source_dir=source_dir)
rl$fit(job_name="new_name")
new_role = "role"
new_entry_point = "deploy_script.py"
vpc_config = list("Subnets"=list("foo"), "SecurityGroupIds"=list("bar"))
model_name = "model-name"
model = rl$create_model(
role=new_role, entry_point=new_entry_point, vpc_config_override=vpc_config, name=model_name
)
expect_equal(model$role, new_role)
expect_equal(model$vpc_config, vpc_config)
expect_equal(model$entry_point, new_entry_point)
expect_equal(model$name, model_name)
})
test_that("test create model with custom image",{
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
image = "selfdrivingcars:9000"
sms <- sagemaker_session()
rl = RLEstimator$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
image_uri=image,
container_log_level=container_log_level,
source_dir=source_dir)
job_name = "new_name"
rl$fit(job_name=job_name)
new_entry_point = "deploy_script.py"
model = rl$create_model(entry_point=new_entry_point)
expect_equal(model$sagemaker_session, sms)
expect_equal(model$image_uri, image)
expect_equal(model$entry_point, new_entry_point)
expect_equal(model$role, ROLE)
expect_equal(model$container_log_level,"20")
expect_equal(model$source_dir, source_dir)
})
test_that("test rl", {
sms <- sagemaker_session()
rl = RLEstimator$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
toolkit=RLToolkit$COACH,
toolkit_version=coach_mxnet_version,
framework=RLFramework$MXNET)
inputs = "s3://mybucket/train"
rl$fit(inputs=inputs, experiment_config=EXPERIMENT_CONFIG)
expected_train_args = .create_train_job(
RLToolkit$COACH, coach_mxnet_version, RLFramework$MXNET)
expected_train_args[["input_config"]][[1]][["DataSource"]][["S3DataSource"]][["S3Uri"]] = inputs
expected_train_args[["experiment_config"]] = EXPERIMENT_CONFIG
actual_train_args = sms$train(..return_value = T)
expect_identical(sort(names(actual_train_args)), sort(names(expected_train_args)))
actual_hp = actual_train_args[["hyperparameters"]]
expected_hp = expected_train_args[["hyperparameters"]]
actual_train_args[["hyperparameters"]] = NULL
expected_train_args[["hyperparameters"]] = NULL
for (i in names(actual_hp)){
if(i %in% c("sagemaker_job_name", "sagemaker_submit_directory"))
expect_true(grepl(expected_hp[[i]], actual_hp[[i]]))
else
expect_equal(expected_hp[[i]], actual_hp[[i]])
}
expect_rule_conf = expected_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]]
actual_rule_conf = actual_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]]
expected_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]]= NULL
actual_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]] = NULL
for (i in names(expected_train_args)){
if(i == "job_name")
expect_true(grepl(expected_train_args[[i]], actual_train_args[[i]]))
else
expect_equal(expected_train_args[[i]], actual_train_args[[i]])
}
})
test_that("test deploy mxnet", {
sms <- sagemaker_session()
rl = .rl_estimator(
sms,
RLToolkit$COACH,
coach_mxnet_version,
RLFramework$MXNET,
instance_type="ml.g2.2xlarge")
rl$fit()
predictor = rl$deploy(1, CPU)
expect_true(inherits(predictor, "MXNetPredictor"))
})
test_that("test deploy tfs", {
sms <- sagemaker_session()
rl <- .rl_estimator(
sms,
RLToolkit$COACH,
coach_tensorflow_version,
RLFramework$TENSORFLOW,
instance_type="ml.g2.2xlarge")
rl$fit()
expect_warning({predictor = rl$deploy(1, GPU)})
expect_true(inherits(predictor, "TensorFlowPredictor"))
})
test_that("test deploy ray", {
sms <- sagemaker_session()
rl = .rl_estimator(
sms,
RLToolkit$RAY,
ray_tensorflow_version,
RLFramework$TENSORFLOW,
instance_type="ml.g2.2xlarge")
rl$fit()
error_msg = paste(
"Automatic deployment of Ray models is not currently available.",
"Train policy parameters are available in model checkpoints in the TrainingJob output.")
expect_error(
rl$deploy(1, GPU),
error_msg,
class = "NotImplementedError"
)
})
test_that("test training image uri", {
toolkit = RLToolkit$RAY
framework = RLFramework$TENSORFLOW
sms <- sagemaker_session()
image = "custom-image:latest"
rl = .rl_estimator(
sms,
toolkit,
ray_tensorflow_version,
framework,
instance_type=CPU,
image_uri=image)
expect_equal(image, rl$training_image_uri())
})
test_that("test attach",{
training_image = sprintf("1.dkr.ecr.us-west-2.amazonaws.com/sagemaker-rl-%s:%s%s-cpu-py3",
RLFramework$MXNET, RLToolkit$COACH, coach_mxnet_version)
supported_versions = sagemaker.mlframework:::TOOLKIT_FRAMEWORK_VERSION_MAP[[RLToolkit$COACH]]
framework_version = supported_versions[[coach_mxnet_version]][[RLFramework$MXNET]]
returned_job_description = list(
"AlgorithmSpecification"=list("TrainingInputMode"="File", "TrainingImage"=training_image),
"HyperParameters"=list(
"sagemaker_submit_directory"="s3://some/sourcedir.tar.gz",
"sagemaker_program"="train_coach.py",
"sagemaker_container_log_level"="INFO",
"sagemaker_job_name"="neo",
"training_steps"="100",
"sagemaker_region"="us-west-2"),
"RoleArn"="arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"=list(
"VolumeSizeInGB"=30,
"InstanceCount"=1,
"InstanceType"="ml.c4.xlarge"),
"StoppingCondition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"TrainingJobName"="neo",
"TrainingJobStatus"="Completed",
"TrainingJobArn"="arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"=list("KmsKeyId"="", "S3OutputPath"="s3://place/output/neo"),
"TrainingJobOutput"=list("S3TrainingJobOutput"="s3://here/output.tar.gz")
)
sms <- sagemaker_session()
sms$sagemaker$.call_args("describe_training_job", returned_job_description)
rl = .rl_estimator(
sms,
RLToolkit$COACH,
coach_mxnet_version,
RLFramework$MXNET,
instance_type="ml.g2.2xlarge")
estimator = rl$attach(training_job_name="neo", sagemaker_session=sms)
expect_equal(estimator$latest_training_job, "neo")
expect_equal(estimator$framework, RLFramework$MXNET)
expect_equal(estimator$toolkit, RLToolkit$COACH)
expect_equal(estimator$framework_version,framework_version)
expect_equal(estimator$toolkit_version, coach_mxnet_version)
expect_equal(estimator$role, "arn:aws:iam::366:role/SageMakerRole")
expect_equal(estimator$instance_count, 1)
expect_equal(estimator$max_run, 24 * 60 * 60)
expect_equal(estimator$input_mode,"File")
expect_equal(estimator$base_job_name, "neo")
expect_equal(estimator$output_path, "s3://place/output/neo")
expect_equal(estimator$output_kms_key, "")
expect_equal(estimator$hyperparameters()[["training_steps"]], "100")
expect_equal(estimator$source_dir, "s3://some/sourcedir.tar.gz")
expect_equal(estimator$entry_point, "train_coach.py")
expect_equal(estimator$metric_definitions, RLEstimator$public_methods$default_metric_definitions(RLToolkit$COACH))
})
test_that("test attach wrong framework", {
training_image = "1.dkr.ecr.us-west-2.amazonaws.com/sagemaker-mxnet-py2-cpu:1.0.4"
rjd = list(
"AlgorithmSpecification"=list("TrainingInputMode"="File", "TrainingImage"=training_image),
"HyperParameters"=list(
"sagemaker_submit_directory"="s3://some/sourcedir.tar.gz",
"checkpoint_path"="s3://other/1508872349",
"sagemaker_program"="iris-dnn-classifier.py",
"sagemaker_container_log_level"="INFO",
"training_steps"="100",
"sagemaker_region"="us-west-2"),
"RoleArn"="arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"=list(
"VolumeSizeInGB"=30,
"InstanceCount"=1,
"InstanceType"="ml.c4.xlarge"),
"StoppingCondition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"TrainingJobName"="neo",
"TrainingJobStatus"="Completed",
"TrainingJobArn"="arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"=list("KmsKeyId"="", "S3OutputPath"="s3://place/output/neo"),
"TrainingJobOutput"=list("S3TrainingJobOutput"="s3://here/output.tar.gz")
)
sms <- sagemaker_session()
sms$sagemaker$.call_args("describe_training_job", rjd)
rl = .rl_estimator(
sms,
RLToolkit$COACH,
coach_mxnet_version,
RLFramework$MXNET,
instance_type="ml.g2.2xlarge")
expect_error(
rl$attach(training_job_name="neo", sagemaker_session=sms),
"Training job: neo didn't use image for requested framework",
class="ValueError"
)
})
test_that("test attach custom image",{
training_image = "rl:latest"
returned_job_description = list(
"AlgorithmSpecification"=list("TrainingInputMode"="File", "TrainingImage"=training_image),
"HyperParameters"=list(
"sagemaker_submit_directory"="s3://some/sourcedir.tar.gz",
"sagemaker_program"="iris-dnn-classifier.py",
"sagemaker_s3_uri_training"="sagemaker-3/integ-test-data/tf_iris",
"sagemaker_container_log_level"="INFO",
"sagemaker_job_name"="neo",
"training_steps"="100",
"sagemaker_region"="us-west-2"),
"RoleArn"="arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"=list(
"VolumeSizeInGB"=30,
"InstanceCount"=1,
"InstanceType"="ml.c4.xlarge"),
"StoppingCondition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"TrainingJobName"="neo",
"TrainingJobStatus"="Completed",
"TrainingJobArn"="arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"=list("KmsKeyId"="", "S3OutputPath"="s3://place/output/neo"),
"TrainingJobOutput"=list("S3TrainingJobOutput"="s3://here/output.tar.gz")
)
sms <- sagemaker_session()
sms$sagemaker$.call_args("describe_training_job", returned_job_description)
rl = .rl_estimator(
sms,
RLToolkit$COACH,
coach_mxnet_version,
RLFramework$MXNET,
instance_type="ml.g2.2xlarge")
estimator = rl$attach(training_job_name="neo", sagemaker_session=sms)
expect_equal(estimator$latest_training_job, "neo")
expect_equal(estimator$image_uri, training_image)
expect_equal(estimator$training_image_uri(), training_image)
})
test_that("test wrong framework format",{
sms <- sagemaker_session()
error_msg = "Invalid type.*"
expect_error(
RLEstimator$new(
toolkit=RLToolkit$RAY,
framework="TF",
toolkit_version=RLEstimator$RAY_LATEST_VERSION,
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
framework_version=NULL),
error_msg,
class="ValueError"
)
})
test_that("test wrong toolkit format",{
error_msg = "Invalid type.*"
sms <- sagemaker_session()
expect_error(
RLEstimator$new(
toolkit="coach2",
framework=RLFramework$TENSORFLOW,
toolkit_version=RLEstimator$public_fields$COACH_LATEST_VERSION_TF,
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
framework_version=NULL),
error_msg,
class = "ValueError"
)
})
test_that("test missing required parameters",{
sms <- sagemaker_session()
error_msg = "Please provide.*"
expect_error(
RLEstimator$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE),
error_msg,
class = "AttributeError"
)
})
test_that("test wrong type parameters",{
sms <- sagemaker_session()
error_msg = "Provided.*"
expect_error(
RLEstimator$new(
toolkit=RLToolkit$COACH,
framework=RLFramework$TENSORFLOW,
toolkit_version=RLEstimator$public_fields$RAY_LATEST_VERSION,
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE),
error_msg,
class = "AttributeError"
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.