# rGclass {{{
#' Function to characterize Productivity and refpts based on r and Generation
#'
#' @param r value of the intrinsic rate of population increase
#' @param gt generation time G
#'
#' @return list with Productivity category and suggest Fbrps
#' @export
rGclass = function(r=NULL,gt=NULL){
rg = data.frame(Low=c(0.00001,0.15),Medium=c(0.150001,0.5),High=c(0.500001,1))
gg = data.frame(Low=c(50,10.001),Medium=c(10,5),High=c(5,0))
Fspr = c(40,40,50)
Fsb = c(35,35,40)
selr = selg = 100
if(is.null(r)==FALSE){
mur = apply(rg,2,min)
selr = max(which(r>mur))
}
if(is.null(gt)==FALSE){
mug = apply(gg,2,min)
selg = min(which(gt>mug))
}
sel = min(selg,selr)
category = names(rg)[sel]
return(list(class=category,Fspr=Fspr[sel],Fsb=Fsb[sel]))
}
# #{{{ color options
#' r4sscol
#' @param n number of colors
#' @param alpha transluscency
#' @return vector of color codes
#' @export
rc4 <- function(n,alpha=1){
# a subset of rich.colors by Arni Magnusson from the gregmisc package
# a.k.a. rich.colors.short, but put directly in this function
# to try to diagnose problem with transparency on one computer
x <- seq(0, 1, length = n)
r <- 1/(1 + exp(20 - 35 * x))
g <- pmin(pmax(0, -0.8 + 6 * x - 5 * x^2), 1)
b <- dnorm(x, 0.25, 0.15)/max(dnorm(x, 0.25, 0.15))
rgb.m <- matrix(c(r, g, b), ncol = 3)
rich.vector <- apply(rgb.m, 1, function(v) rgb(v[1], v[2], v[3], alpha=alpha))
return(rich.vector)
}
#' ss3col
#' @param n number of colors
#' @param alpha transluscency
#' @return vector of color codes
#' @export
ss3col <- function(n,alpha=1){
if(n>3) col <- rc4(n+1)[-1]
if(n<3) col <- rc4(n)
if(n==3) col <- c("blue","green","red")
if(alpha<1){
# new approach thanks to Trevor Branch
cols <- adjustcolor(col, alpha.f=alpha)
} else {
cols=col
}
return(cols)
}
#' huecol
#' @param n number of colors
#' @param alpha transluscency
huecol <- function(n,alpha=1) {
hues = seq(15, 375, length = n + 1)
adjustcolor(hcl(h = hues, l = 65, c = 100)[1:n],alpha.f=alpha)
}
# }}}# color options
#' stockMedians()
#
#' Converts FLStock into simplified FLStock with Median FLQuants
#' @param object of class *FLStock* or *FLStockR* or *FLStocks*
#' @param FUN computes iterMedians, iterMeans
#' @param ssbQ SSB quarter seasonal models
#' @param recQ recruitment quarter seasonal models
#' @return FLStockR with *FLQuants*
#' @export
stockMedians <- function(object,FUN=iterMedians,ssbQ=1,recQ=1){
stks= TRUE
if(class(object)%in%c("FLStockR","FLStock")){
object= FLStocks(stk=object)
stks=FALSE
}
out =FLStocks(lapply(object,function(x){
B = apply(ssb(x)[,,,ssbQ],c(2,6),sum)
H = apply(fbar(x),c(2,6),mean)
R = apply(rec(x)[,,,recQ],c(2,6),sum)
C = apply(computeCatch(x),c(2,6),sum)
D = apply(computeDiscards(x),c(2,6),sum)
L = apply(computeLandings(x),c(2,6),sum)
dimnames(B)$age = "1"
dimnames(C)$age = "1"
dimnames(H)$age = "1"
dimnames(R)$age = "1"
dimnames(L)$age = "1"
dimnames(D)$age = "1"
dimnames(B)$season = "all"
dimnames(C)$season = "all"
dimnames(H)$season = "all"
dimnames(R)$season = "all"
dimnames(L)$season = "all"
dimnames(D)$season = "all"
B = FUN(B)
H = FUN(H)
R = FUN(R)
C = FUN(C)
L = FUN(L)
D = FUN(D)
year = an(dimnames(x)$year)
iters = an(dimnames(B)$iter)
stk = FLStockR(stock.n=FLQuant(R, dimnames=list(age="1", year = (year),iter=iters)),
catch.n = C,
landings.n = L,
discards.n = D,
stock.wt=FLQuant(1, dimnames=list(age="1", year = (year),iter=iters)),
landings.wt=FLQuant(1, dimnames=list(age="1", year = year,iter=iters)),
discards.wt=FLQuant(1, dimnames=list(age="1", year = year,iter=iters)),
catch.wt=FLQuant(1, dimnames=list(age="1", year = year,iter=iters)),
mat = as.FLQuant(data.frame(age=1,year=year,unit="unique",
season="all",area="unique",iter=iters,data=an(B/R))),
#mat=B/R,
m=FLQuant(0.0001, dimnames=list(age="1", year = year)),
harvest = H,
m.spwn = FLQuant(0, dimnames=list(age="1", year = year)),
harvest.spwn = FLQuant(0.0, dimnames=list(age="1", year = year))
)
units(stk) = standardUnits(stk)
stk@catch = computeCatch(stk)
stk@landings = computeLandings(stk)
stk@discards = computeDiscards(stk)
stk@stock = computeStock(stk)
if(class(x)=="FLStockR"){
stk = FLStockR(stk)
stk@refpts = x@refpts
}
stk@desc = x@desc
return(stk)
}))
if(!stks){
out = out[[1]]
}
return(out)
}
bisect.ref = function (stock, sr, deviances = rec(stock) %=% 1, metrics, refpts,
statistic, years, pyears = years, tune, target=1, tol = 0.01,
maxit = 15, verbose = TRUE)
{
if (names(tune)[1] %in% c("f", "fbar"))
foo <- ffwd
else foo <- fwd
cmin <- fwdControl(year = years, quant = names(tune)[1],
value = unlist(tune)[1])
if (verbose)
cat(paste0("[1] ", names(tune), ": ", unlist(tune)[1]))
rmin <- foo(stock, sr = sr, control = cmin, deviances = deviances)
pmin <- performance(rmin, metrics = metrics, statistics = statistic,
refpts = refpts, years = pyears)
obmin <- (target-mean(pmin$data, na.rm = TRUE))
if (verbose)
cat(" - target:", mean(pmin$data, na.rm = TRUE), " - diff: ",
obmin, "\n")
if (isTRUE(all.equal(obmin, 0, tolerance = tol)))
return(rmin)
cmax <- fwdControl(year = years, quant = names(tune)[1],
value = unlist(tune)[2])
if (verbose)
cat(paste0("[2] ", names(tune), ": ", unlist(tune)[2]))
rmax <- foo(stock, sr = sr, control = cmax, deviances = deviances)
pmax <- performance(simplify(rmax,weighted=TRUE), metrics = metrics, statistics = statistic,
refpts = refpts, probs = NULL, years = pyears)
obmax <- (target - mean(pmax$data, na.rm = TRUE))
if (verbose)
cat(" - target:", mean(pmax$data, na.rm = TRUE), " - diff: ",
obmax, "\n")
if (isTRUE(all.equal(obmax, 0, tolerance = tol)))
return(rmax)
if ((obmin * obmax) > 0) {
warning("Range of hcr param(s) cannot achieve requested tuning objective probability")
return(list(min = rmin, max = rmax))
}
count <- 0
while (count <= maxit) {
cmid <- control
cmid <- fwdControl(year = years, quant = names(tune)[1],
value = (cmin$value + cmax$value)/2)
if (verbose)
cat(paste0("[", count + 3, "] ", names(tune), ": ",
cmid$value[1]))
rmid <- foo(stock, sr = sr, control = cmid, deviances = deviances)
pmid <- performance(rmid, metrics = metrics, statistics = statistic,
refpts = refpts, probs = NULL, years = pyears)
obmid <- target-mean(pmid$data, na.rm = TRUE)
if (verbose)
cat(" - target:", mean(pmid$data, na.rm = TRUE), " - diff: ",
obmid, "\n")
if (isTRUE(all.equal(obmid, 0, tolerance = tol))) {
return(rmid)
}
if ((obmin * obmid) < 0) {
cmax <- cmid
obmax <- obmid
if (isTRUE(all.equal(cmin$value[1], cmid$value[1],
tolerance = tol))) {
return(rmid)
}
}
else {
cmin <- cmid
obmin <- obmid
if (isTRUE(all.equal(cmid$value[1], cmax$value[1],
tolerance = tol))) {
return(rmid)
}
}
count <- count + 1
}
warning("Solution not found within 'maxit', check 'range', 'maxit' or 'tol'.")
return(rmid)
}
#' ssmvln()
#'
#' function to generate uncertainty for Stock Synthesis
#'
#' @param ss3rep from r4ss::SS_output
#' @param out choice c("iters","mle")
#' @param Fref Choice of Fratio c("MSY","Btgt","SPR","F01"), correponding to F_MSY and F_Btgt
#' @param years single year or vector of years for mvln
#' @param virgin if FALSE (default) the B0 base for Bratio is SSB_unfished
#' @param mc number of monte-carlo simulations
#' @param weight weighting option for model ensembles weight*mc
#' @param run qualifier for model run
#' @param plot option to show plot
#' @param ymax ylim maximum
#' @param xmax xlim maximum
#' @param addprj include forecast years
#' @param legendcex=1 Allows to adjust legend cex
#' @param verbose Report progress to R GUI?
#' @param seed retains interannual correlation structure like MCMC
#' @param observed.catch if FALSE expected catch is used
#' @return output list of quant posteriors and mle's
#' @author Henning Winker (GFCM)
#' @export
ssmvln = function(ss3rep,Fref = NULL,years=NULL,virgin=FALSE,mc=1000,weight=1,run="MVLN",
addprj=FALSE,ymax=NULL,xmax=NULL,legendcex=1,verbose=TRUE,seed=123,observed.catch=FALSE){
status=c('Bratio','F')
quants =c("SSB","Recr")
mc = round(weight*mc,0)
hat = ss3rep$derived_quants
cv = cv1 = ss3rep$CoVar
if(is.null(cv)) stop("CoVar from Hessian required")
# Get years
allyrs = unique(as.numeric(gsub(paste0(status[1],"_"),"",hat$Label[grep(paste0(status[1],"_"), hat$Label)])))#[-1]
allyrs = allyrs[!is.na(allyrs)]
if(is.null(years) & addprj==TRUE) yrs = allyrs
if(is.null(years) & addprj==FALSE) yrs = allyrs[allyrs<=ss3rep$endyr]
if(is.null(years)==FALSE) yrs = years[years%in%allyrs==TRUE]
estimate = ifelse(yrs<=ss3rep$endyr,"fit","forecast")
# brp checks for starter file setting
refyr = max(yrs)
endyr = ss3rep$endyr
bt = hat[hat$Label==paste0("SSB_",endyr),2]
ft = hat[hat$Label==paste0("F_",endyr),2]
# virgin
bv =hat[hat$Label%in%c("SSB_virgin","SSB_Virgin"),2]
# unfished
b0 =hat[hat$Label%in%c("SSB_unfished","SSB_Unfished"),2]
fmsy = hat[hat$Label%in%c("Fstd_MSY","annF_MSY"),2]
fspr = hat[hat$Label%in%c("Fstd_SPR","annF_SPR"),2]
bmsy = hat[hat$Label==paste0("SSB_MSY"),2]
bf01= f01=option.btgt = FALSE
if("SSB_Btgt"%in%hat$Label){
btgt = hat[hat$Label==paste0("SSB_Btgt"),2]
if(!is.null(Fref)) if(Fref=="F01") stop("F01 not defined: choose Fref = MSY or Btgt ")
}
if("SSB_F01"%in%hat$Label){
f01=TRUE
if(is.null(Fref)) Fref = "Btgt"
btgt = hat[hat$Label==paste0("SSB_F01"),2]*b0 # Why SSB_F01 ratio???
if(round(hat[hat$Label%in%c("annF_F01"),2],2)==round(fmsy,2)){
option.btgt=TRUE
if(!is.null(Fref))if(Fref=="MSY") stop("FMSY not defined: choose Fref = F01 ")
bf01= TRUE}
}
bratio = hat[hat$Label==paste0("Bratio_",endyr),2]
bb.check = c(bt/bv,bt/bmsy,bt/btgt)
option.btgt = FALSE
if(btgt==bmsy){
option.btgt = TRUE
if(is.null(Fref)) Fref = "Btgt"
if(Fref=="MSY") stop("FMSY not defined: choose Fref = Btgt ")
}
if(fmsy==fspr){
if(is.null(Fref)) Fref = "SPR"
if(Fref=="MSY") stop("FMSY not defined: choose Fref = SPR")
}
# bratio definition
bb = max(which(abs(bratio-bb.check)==min(abs(bratio-bb.check))))
if(bf01) bb=4
bbasis = c("SSB/SSB0","SSB/SSBMSY","SSB/SSBtgt","SSB/SSBF01")[bb]
if(!is.null(ss3rep$F_report_basis))
fbasis = strsplit(ss3rep$F_report_basis,";")[[1]][1]
# For r4ss_1.50.0
if(!is.null(ss3rep$F_std_basis))
fbasis = strsplit(ss3rep$F_std_basis,";")[[1]][1]
if(is.na(ss3rep$btarg)) ss3rep$btarg=0
gettrg = ifelse(ss3rep$btarg>0,ss3rep$btarg,round(btgt/b0,2))
if(fbasis%in%c("_abs_F","(F)/(Fmsy)",paste0("(F)/(F_at_B",ss3rep$btarg*100,"%)"),paste0("(F)/(F",ss3rep$btarg*100,"%SPR)"))){
fb = which(c("_abs_F","(F)/(Fmsy)",paste0("(F)/(F_at_B",ss3rep$btarg*100,"%)"),
paste0("(F)/(F",ss3rep$btarg*100,"%SPR)"))%in%fbasis)
} else { stop("F_report_basis is not defined, please rerun Stock Synthesis with recommended starter.ss option for F_report_basis: 1")}
if(is.null(Fref) & fb%in%c(1,2)) Fref = "MSY"
if(is.null(Fref) & fb%in%c(3)) Fref = "Btgt"
if(is.null(Fref) & fb%in%c(4)) Fref = "SPR"
if(Fref=="F01") Fref="Btgt" # hack to avoid redundancy later
if(verbose) cat("\n","starter.sso with Bratio:",bbasis,"and F:",fbasis,"\n","\n")
bref = gettrg
if(fb==4 & Fref[1] %in% c("Btgt","MSY")) stop("Fref = ",Fref[1]," option conflicts with ",fbasis," in starter.sso, please choose Fref = SPR")
if(fb==2 & Fref[1] %in% c("Btgt","SPR")) stop("Fref = ",Fref[1]," option conflicts with ",fbasis," in starter.sso, please choose Fref = MSY")
if(fb==3 & Fref[1] %in% c("Btgt","MSY")) stop("Fref = ",Fref[1]," option conflicts with ",fbasis,", in starter.sso, please choose Fref = Btgt")
if(fb%in%c(1,2) & Fref[1] =="MSY") Fquant = "MSY"
if(fb%in%c(1,3) & Fref[1] =="Btgt") Fquant = "Btgt"
if(fb%in%c(1,4) & Fref[1] =="SPR") Fquant = "SPR"
if(Fquant == "Btgt" & f01) Fquant = "F01"
# check ss3 version
if("Fstd_MSY"%in%hat$Label){Fname = "Fstd_"} else {Fname="annF_"}
cv <- cv[cv$label.i %in% paste0(status,"_",yrs),]
cv1 = cv1[cv1$label.i%in%paste0(Fname,Fquant) & cv1$label.j%in%paste0(status,"_",yrs),]
fref = hat[hat$Label==paste0(Fname,Fquant),]
cv$label.j[cv$label.j=="_"] <- cv$label.i[cv$label.j=="_"]
if(is.null(hat$Label)){ylabel = hat$LABEL} else {ylabel=hat$Label}
kb=mle = NULL
for(yi in 1:length(yrs)){
set.seed(seed)
yr = yrs[yi]
x <- cv[cv$label.j %in% paste0(status[2],"_",c(yr-1,yr,yr+1)) & cv$label.i %in% paste0(status[1],"_",c(yr-1,yr,yr+1)),]
x1 = cv1[cv1$label.j %in% paste0(status[1],"_",c(yr-1,yr,yr+1)),]
x2 = cv1[cv1$label.j %in% paste0(status[2],"_",c(yr-1,yr,yr+1)),]
y = hat[ylabel %in% paste0(status,"_",yr),] # old version Label not LABEL
y$Value[1] = ifelse(y$Value[1]==0,0.001,y$Value[1])
varF = log(1+(y$StdDev[1]/y$Value[1])^2) # variance log(F/Fmsy)
varB = log(1+(y$StdDev[2]/y$Value[2])^2) # variance log(SSB/SSBmsy)
varFref = log(1+(fref$StdDev[1]/fref$Value)^2) # variance log(F/Fmsy)
cov = log(1+mean(x$corr)*sqrt(varF*varB)) # covxy
cov1 = log(1+mean(x1$corr)*sqrt(varB*varFref)) # covxy
cov2 = log(1+mean(x2$corr)*sqrt(varF*varFref)) # covxy
# MVN means of SSB/SBBmsy, Fvalue and Fref (Ftgt or Fmsy)
mvnmu = log(c(y$Value[2],y$Value[1],fref$Value)) # Assume order F_ then Bratio_
# Create MVN-cov-matrix
mvncov = matrix(NA,ncol=3,nrow=3)
diag(mvncov) = c(varB,varF,varFref)
mvncov[1,2] = mvncov[2,1] = cov
mvncov[2,3] = mvncov[3,2] = cov1
mvncov[1,3] = mvncov[3,1] = cov2
kb.temp = data.frame(year=yr,run=run,type=estimate[yi],iter=1:mc,exp(mvtnorm::rmvnorm(mc ,mean = mvnmu,sigma = mvncov,method=c( "svd")))) # random MVN generator
colnames(kb.temp) = c("year","run","type","iter","stock","harvest","F")
if(length(quants)>0){
quant=NULL
for(qi in 1:length(quants)){
qy = hat[ylabel %in% paste0(quants[qi],"_",yr),]
qsd = sqrt(log(1+(qy$StdDev[1]/qy$Value[1])^2))
quant = cbind(quant,rlnorm(mc,log(qy$Value[1])-0.5*qsd*qsd,qsd))
}
colnames(quant) = quants
kb.temp = cbind(kb.temp,quant)
}
kb = rbind(kb,cbind(kb.temp))
mle = rbind(mle,data.frame(year=yr,run=run,type=estimate[yi],stock=y$Value[2],harvest=y$Value[1],F=fref$Value[1]))
}
# add mle quants
qmles = NULL
for(qi in 1:length(quants)){
qmles = cbind(qmles, hat[ylabel %in% paste0(quants[qi],"_",yrs),]$Value)
}
colnames(qmles) = quants
mle = cbind(mle,qmles)
mle = mle[,c(1:5,7,6,8)]
kb = kb[,c(1:6,8,7,9)]
# virgin or unfished?
if(!virgin){
if(bb%in%c(1,3)){
if(bb==1 | bb==3 & !option.btgt){
kb[,"stock"] = kb[,"stock"]*(bv/b0)
mle[,"stock"] = mle[,"stock"]*(bv/b0)
}}}
if(virgin){ # reverse correction
if(bb==3 & option.btgt){
kb[,"stock"] = kb[,"stock"]*(b0/bv)
mle[,"stock"] = mle[,"stock"]*(b0/bv)
}}
# Take ratios
if(bb==1){
kb[,"stock"] = kb[,"stock"]/bref
mle[,"stock"] = mle[,"stock"]/bref
}
if(fb> 1){
kb[,"F"] = kb[,"F"]*kb[,"harvest"]
mle[,"F"] = mle[,"F"]*mle[,"harvest"]
} else {
fi = kb[,"harvest"]
fm = mle[,"harvest"]
kb[,"harvest"] = kb[,"harvest"]/kb[,"F"]
kb[,"F"] = fi
mle[,"harvest"] = mle[,"harvest"]/mle[,"F"]
mle[,"F"] = fm
}
# Add catch
if(observed.catch){
C_obs = aggregate(Obs~Yr,ss3rep$catch,sum)
} else {
C_obs = aggregate(Exp~Yr,ss3rep$catch,sum)
}
#colnames(C_obs) = c("Yr","Obs")
Cobs = C_obs[C_obs$Yr%in%yrs,]
foreyrs = unique(as.numeric(gsub(paste0("ForeCatch_"),"",hat$Label[grep(paste0("ForeCatch_"), hat$Label)])))
Cfore = data.frame(Yr=foreyrs,Obs=hat$Value[hat$Label%in%paste0("ForeCatch_",foreyrs)] )
names(Cfore) = names(Cobs)
Catch = rbind(Cobs,Cfore)
Catch = Catch[Catch$Yr%in%yrs,]
kb$Catch = rep(Catch[,2],each=max(kb$iter))
mle$Catch = Catch[,2]
kb$Landings = kb$Catch
mle$Landings = mle$Catch
kb$Discards = NA
mle$Discards = NA
if(!is.na(ss3rep$discard)){
if(observed.catch){
D_obs = aggregate(Obs~Yr,ss3rep$discard,sum)
} else {
D_obs = aggregate(Exp~Yr,ss3rep$discard,sum)
}
mle$Discards[mle$year%in%D_obs$Yr] = D_obs[,2]
kb$Discards[kb$year%in%D_obs$Yr] = rep(D_obs[,2],each=max(kb$iter))
mle$Landings = mle$Catch-ifelse(is.na(mle$Discards),0,mle$Discards)
kb$Landings = kb$Catch-ifelse(is.na(kb$Discards),0,kb$Discards)
}
trg =round(bref*100,0)
spr = round(ss3rep$sprtarg*100,0)
xlab = c(bquote("SSB/SSB"[.(trg)]),expression(SSB/SSB[MSY]),bquote("SSB/SSB"[.(trg)]),expression(SSB/SSB[F0.1]))[bb]
ylab = c(expression(F/F[MSY]),
bquote("F/F"[SB~.(trg)]),
bquote("F/F"[SPR~.(spr)]),
expression(F/F[0.1])
)[which(c("MSY","Btgt","SPR","F01")%in%Fquant)]
labs = ifelse(quants=="Recr","Recruits",quants)
refB = c(paste0("B",trg),"Bmsy",paste0("B",trg),"BF0.1")[bb]
refF = c("Fmsy",
paste0("Fb",trg),
paste0("F",spr),
"F0.1")[which(c("MSY","Btgt","SPR","F01")%in%Fquant)]
refpts = data.frame(RefPoint=c("Ftgt","Btgt","MSY","B0","R0"),value=c((mle$F/mle$harvest)[1],
(mle$SSB/mle$stock)[1],
MSY=hat$Value[hat$Label=="Dead_Catch_MSY"],
B0=b0,
MSY=hat$Value[hat$Label=="Recr_unfished"]))
return(list(kb=kb,mle=mle,refpts=refpts, quants=c("stock","harvest","SSB","F","Recr","Catch"),
labels=c(xlab,ylab,labs[1],"F",labs[2],"Catch"),Btgtref = bref))
} # End
# {{{
#' blag()
#'
#' function to assign B[y+1] to B[y]. Warning correlation structure of B[y+1] and F[y] is meaningless
#'
#' @param mvn
#' @return output list of quant posteriors and mle's
#' @author Henning Winker (GFCM)
#' @export
blag <- function(mvn,verbose=TRUE){
d1 = mvn$mle
d2 = mvn$kb
endyr = max(mvn$mle$year)
styr = min(mvn$mle$year)
d1B = d1[d1$year!=styr,]
d2B = d2[d2$year!=styr,]
d1 = d1[d1$year!=endyr,]
d2 = d2[d2$year!=endyr,]
d1[,c("stock","SSB")] = d1B[,c("stock","SSB")]
d2[,c("stock","SSB")] = d2B[,c("stock","SSB")]
out = mvn
out$mle =d1
out$kb=d2
return(out)
}
# }}}
# {{{
#' Mlorenzen
#'
#' computes Lorenzen M with scaling option
#' @param object weight-at-age of class *FLQuant*
#' @param Mref reference M for scaling
#' @param Aref reference Age for scaling
#' @return FLQuant m()
#' @export
#' @examples
#' data(ple4)
#' Ml = Mlorenzen(stock.wt(ple4))
#' # Scale
#' Ms = Mlorenzen(stock.wt(ple4),Mref=0.2,Aref=2)
#' flqs = FLQuants(Lorenzen=Ml,Scaled=Ms)
Mlorenzen = function(object,Mref="missing",Aref=2){
Ml = 3*((1000*object)^(-0.288))
if(missing("Mref"))
out = Ml
if(!missing("Mref"))
out = Ml*an(Mref/Ml[ac(Aref),])
units(out) = "m"
return(out)
}
#}}}
#' ss3vcv
#'
#' function to generate to extract variance-covariance matrix for F and SSB
#'
#' @param ss3rep from r4ss::SS_output
#' @return covariance matrix for F and SSB end year
#' @author Henning Winker (GFCM)
#' @export
ss3vcv = function(ss3rep){
hat = ss3rep$derived_quants
if(is.null(hat$Label)){ylabel = hat$LABEL} else {ylabel=hat$Label}
cv = ss3rep$CoVar
if(is.null(cv)) stop("CoVar from Hessian required")
# Get years
years=ss3rep$endyr
bt = hat[hat$Label==paste0("SSB_",years),2]
ft = hat[hat$Label==paste0("F_",years),2]
# virgin
status = c("SSB","F")
# check ss3 version
cv <- cv[cv$label.i %in% paste0(c("SSB_","F"),"_",years),]
yr = years
x <- cv[cv$label.j %in% paste0(status[1],"_",c(yr)) & cv$label.i %in% paste0(status[2],"_",c(yr)),]
y = hat[ylabel %in% paste0(status,"_",yr),] # old version Label not LABEL
y$Value[2] = ifelse(y$Value[1]==0,0.001,y$Value[2])
varF = log(1+(y$StdDev[2]/y$Value[2])^2) # variance log(F/Fmsy)
varB = log(1+(y$StdDev[1]/y$Value[1])^2) # variance log(SSB/SSBmsy)
cov = log(1+mean(x$corr)*sqrt(varF*varB)) # covxy
# MVN means of SSB/SBBmsy, Fvalue and Fref (Ftgt or Fmsy)
mvnmu = log(c(y$Value[1],y$Value[2]))
# Create MVN-cov-matrix
mvncov = matrix(NA,ncol=2,nrow=2)
diag(mvncov) = c(varB,varF)
mvncov[1,2] = mvncov[2,1] = cov
rownames(mvncov) = colnames(mvncov) = c("SSB","F")
return(mvncov)
} # End
#' ss3devs
#'
#' function to generate MVN assessment error deviations of F and SSB
#'
#' @param om *FLom* or *FLStock* object
#' @param vcv covariance matrix from ss3vcv()
#' @param Fphi autocorrelation of F error
#' @param bias.correct lognormal bias correction if TRUE
#' @return FLQuants with devs of F and SSB
#' @author Henning Winker (GFCM)
#' @export
ss3devs <- function(om, vcv, Fphi = 0.423, bias.correct = TRUE,...){
years = dimnames(om)$year
iters = dims(om)$iter
n <- length(years)
logbias <- 0
rho = Fphi
if (bias.correct)
logbias <- 0.5 * diag(vcv)
rhosq <- c(rho)^2
resmvn = mvtnorm::rmvnorm(n*iters ,mean = c(0,0),sigma = vcv,method=c( "svd"))
resB <- matrix(resmvn[,1],
nrow = n, ncol = iters)
resF = matrix(resmvn[,2],
nrow = n, ncol = iters)
resB <- apply(resB, 2, function(x) {
for (i in 2:n) x[i] <- 0 * x[i - 1] + sqrt(1 - 0) *
x[i]
return(exp(x - logbias[1]))
})
resF <- apply(resF, 2, function(x) {
for (i in 2:n) x[i] <- rho * x[i - 1] + sqrt(1 - rhosq) *
x[i]
return(exp(x - logbias[2]))
})
devs <- FLQuants(
SSB = FLQuant(array(resB, dim = c(1, n, 1, 1, 1, iters)),
dimnames = list(year = years, iter = seq(1, iters))),
F = FLQuant(array(resF, dim = c(1, n, 1, 1, 1, iters)),
dimnames = list(year = years, iter = seq(1, iters))))
return(devs)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.