ssc.plot.heatmap | R Documentation |
plot heatmap
ssc.plot.heatmap(
obj,
assay.name = "exprs",
out.prefix = NULL,
ncell.downsample = NULL,
ave.by = NULL,
columns = NULL,
columns.order = NULL,
gene.desc = NULL,
colSet = list(),
pdf.width = 16,
pdf.height = 15,
do.scale = TRUE,
z.lo = -2.5,
z.hi = 2.5,
z.step = 1,
exp.title = "Exp",
do.clustering.row = T,
do.clustering.col = T,
dend.col = FALSE,
dend.row = FALSE,
clustering.distance = "spearman",
clustering.method = "complete",
k.row = 1,
k.col = 1,
returnHT = FALSE,
palette.name = NULL,
palette.ann.numeric = "RdYlBu",
Y.level.ann.numeric = NULL,
row.split = NULL,
column.split = NULL,
annotation_legend_param = list(),
ann.bar.height = 1.5,
mytitle = "",
...
)
obj |
object of |
assay.name |
character; which assay (default: "exprs") |
out.prefix |
character; output prefix. (default: NULL) |
ncell.downsample |
integer; number of cells downsample to. (default: NULL) |
ave.by |
character; average the expression profile grouping by this. (default: NULL) |
columns |
character; columns in colData(obj) to be showd. must be subset of columns of colData(obj) and ave.by (if it's not NULL) (default: NULL) |
columns.order |
character; columns of colData(obj) used for ordering (default: NULL) |
gene.desc |
data.frame; it must contain columns geneID and Group (default: NULL) |
colSet |
list; mapping iterms in the names to colors in the values. (default: list()) |
pdf.width |
double; width of the pdf file. (default:16) |
pdf.height |
double; height of the pdf file. (default:15) |
do.scale |
logical; wheter scale the rows, just for visualization. (default: TRUE) |
z.lo |
double; z-score lower boundary; z-score lower than this will be set to this (default: -2.5) |
z.hi |
double; z-score higher boundary; z-score higher than this will be set to this (default: 2.5) |
z.step |
double; z-score step, used for coloring the expression value (default: 1) |
exp.title |
character; title for the expression legend (default: "Exp") |
do.clustering.row |
logical; wheter order row (default: TRUE) |
do.clustering.col |
logical; wheter order columns (default: TRUE) |
dend.col |
dendrogram of the columns, 'cluster_columns' of ComplexHeatmap::Heatmap (default: FALSE) |
dend.row |
dendrogram of the rows, 'cluster_rows' of ComplexHeatmap::Heatmap (default: FALSE) |
clustering.distance |
character; one of spearmn, pearson, cosine and euclidean (default: "spearman") |
clustering.method |
character; method for hclust (default: "complete") |
k.row |
integer; number of clusters in the rows (default: 1) |
k.col |
integer; number of clusters in the columns (default: 1) |
returnHT |
logical; whether return HT; (default: FALSE) |
palette.name |
character; which palette to use, such as "RdBu","RdYlBu" (default: NULL) |
palette.ann.numeric |
character; which palette to use, such as "RdBu","RdYlBu" (default: "RdYlBu") |
Y.level.ann.numeric |
vector; value range for numeric annotation (default: NULL) |
row.split |
vector; used for row; must be named or is corresponding to the rows of obj (default: NULL) |
column.split |
vector; used for column; (default: NULL) |
annotation_legend_param |
list; (default: list()) |
ann.bar.height |
double; height of the top annotation (default: 1.5) |
mytitle |
character; title of the figure (default: "") |
... |
parameters pass to plotMatrix.simple() |
identify marker genes based on aov and AUC.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.