#' Description plots of the counts
#'
#' Description plots of the counts according to the biological condition
#'
#' @param counts \code{matrix} of counts
#' @param group factor vector of the condition from which each sample belongs
#' @param col colors for the plots (one per biological condition)
#' @param ggplot_theme ggplot2 theme function (\code{theme_light()} by default)
#' @return PNG files in the "figures" directory and the matrix of the most expressed sequences
#' @author Hugo Varet
descriptionPlots <- function(counts, group, col=c("lightblue","orange","MediumVioletRed","SpringGreen"),
ggplot_theme=theme_light()){
# create the figures directory if does not exist
if (!I("figures" %in% dir())) dir.create("figures", showWarnings=FALSE)
# total number of reads per sample
barplotTotal(counts=counts, group=group, col=col, ggplot_theme=ggplot_theme)
# percentage of null counts per sample
barplotNull(counts=counts, group=group, col=col, ggplot_theme=ggplot_theme)
# distribution of counts per sample
densityPlot(counts=counts, group=group, col=col, ggplot_theme=ggplot_theme)
# features which catch the most important number of reads
majSequences <- majSequences(counts=counts, group=group, col=col, ggplot_theme=ggplot_theme)
# SERE and pairwise scatter plots
cat("Matrix of SERE statistics:\n")
print(tabSERE(counts))
pairwiseScatterPlots(counts=counts, ggplot_theme=ggplot_theme)
return(majSequences)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.