coloc_nominated_egenes | R Documentation |
Across all GWAS-QTL colocalization tests across all studies, take the eGene with the highest colocalziation probability (PP.H4) and assign it as the most likely causal gene in that locus.
coloc_nominated_egenes(
coloc_results,
merged_DT,
label_yaxis = TRUE,
y_lab = "Locus",
x_lab = NULL,
fill_var = "PP.H4",
text_size = 2,
credset_thresh = NULL,
nThread = 1,
show_plot = TRUE,
verbose = TRUE
)
credset_thresh |
The minimum mean Posterior Probability (across all fine-mapping methods used) of SNPs to be included in the "mean.CS" column. |
verbose |
Print messages. |
eQTL queries and colocalization test done with catalogueR.
## Not run:
merged_DT <- echodata::get_Nalls2019_merged()
base_url <- "~/Desktop/Fine_Mapping/Data/GWAS/Nalls23andMe_2019"
coloc_results_path <- file.path(
base_url, "_genome_wide/COLOC/coloc.eQTL_Catalogue_ALL.csv.gz"
)
gg_egene <- coloc_nominated_egenes(coloc_results,
merged_DT = merged_DT,
fill_var = NULL
)
# QTL
base_url <- "/sc/hydra/projects/ad-omics/microglia_omics/Fine_Mapping"
coloc_results_path <- file.path(
base_url,
"Kunkle_Microglia_all_regions/QTL_merged_coloc_results.snp.tsv.gz"
)
merged_DT <- data.table::fread(
file.path(
"/pd-omics/brian/Fine_Mapping/Data/QTL",
"Microglia_all_regions",
"multiGWAS.microgliaQTL_finemapping.csv.gz"
)
)
gg_egene <- coloc_nominated_egenes(coloc_results,
merged_DT = merged_DT,
fill_var = NULL
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.